Right-handed charged current of b->u transition

Tetsuya Enomoto (Osaka university)

In collaboration with Minoru Tanaka(Osaka university) and Ryoutaro Watanabe(KEK)

Right-handed charged current

A. Crivellin, Phys. Rev. D 81,031301(2010).

Now new physics we consider is right-handed charged current in b->u transition. So we need the following dimension-six operator

$$\mathcal{L}_6 = \frac{C}{\Lambda^2} \bar{u} \gamma^{\mu} P_R b \tilde{\Phi}^{\dagger} i D_{\mu} \Phi + \text{h.c.}$$

 Λ : New Physics Scale Φ : Higgs

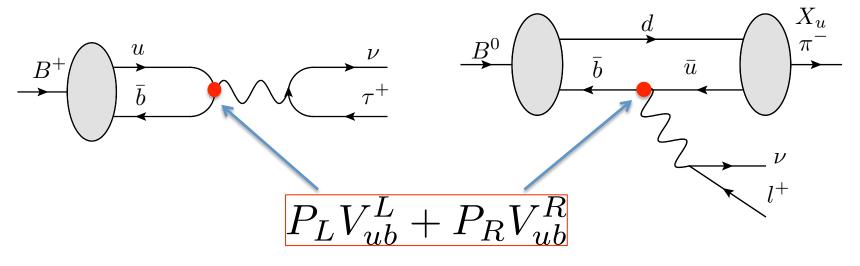
Then lagrangian of b->u transition

$$\mathcal{L}_{CC}^{\text{eff}} = \frac{g}{\sqrt{2}} W_{\mu}^{\dagger} \bar{u} \gamma_{\mu} (V_{ub}^{L} P_L + V_{ub}^{R} P_R) b + \text{h.c.}$$

is found by combining the usual SM interaction with the extra contributions. RH Vub is induced by dim 6 operator and estimated by

$$V_{ub}^R = \frac{C}{2\sqrt{2}G_f\Lambda^2} \simeq 0.003 \left(\frac{C}{1}\right) \left(\frac{3\text{TeV}}{\Lambda}\right)^2 (|V_{ub}^L| = 0.00389)$$

Even if Λ =3TeV, b->u RHCC is sensitive.

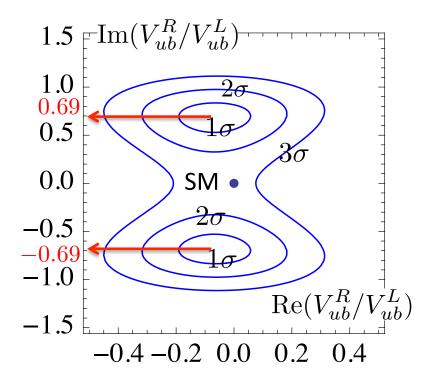

contents

- Constraint from
 - > measurement of |Vub|
 - \triangleright measurement of CP violation in B-> $\pi\pi$
 - > measurement of CP violation in B->DK

Right-handed charged current in MSSM

Constraint from measurement of | Vub |

Effect from RHCC



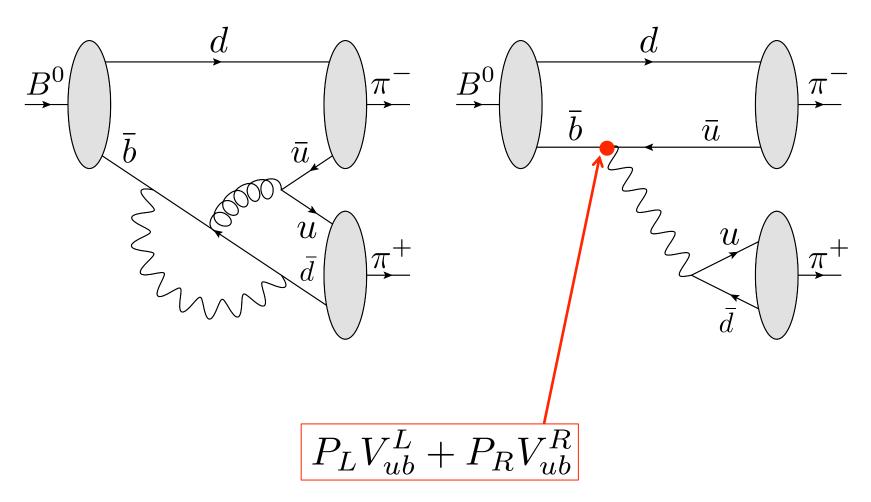
Decay Rate		In SM	With RHCC
$\Gamma(B o au u)$	\propto	$ V_{ub}^L ^2$	$ V_{ub}^L - V_{ub}^R ^2$
$\Gamma(B o \pi l u)$	\propto	$ V_{ub}^L ^2$	$ V_{ub}^L + V_{ub}^R ^2$
$\Gamma(B \to X_u l \nu)$	\propto	$ V_{ub}^L ^2$	$ V_{ub}^L ^2 + V_{ub}^R ^2$
Indirect measurement		$ V_{ub}^L ^2$	$ V_{ub}^L ^2$

We can constrain RH Vub.

Constraint of RHCC

	In SM	With RHCC
$\chi^2/d.o.f$	3.26	2.06

RHCC is better.


Best fit is
$$V_{ub}^R/V_{ub}^L=-0.067\pm0.69i$$
 .

Large Imaginary part is preferred.

If this is true, b->u RHCC can affect CP violation.

Constraint from measurement of CP violation in B-> $\pi\pi$

Diagram of B->ππ

Effect of RHCC on CP violation in B-> $\pi\pi$

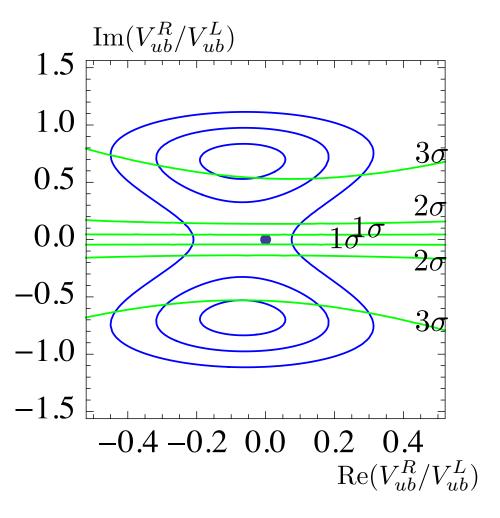
2 CP violating measurements

Direct CP Asymmetry
$$A_{\pi\pi} = \frac{\Gamma(B^+ \to \pi^+\pi^0) - \Gamma(B^- \to \pi^-\pi^0)}{\Gamma(B^+ \to \pi^+\pi^0) + \Gamma(B^- \to \pi^-\pi^0)}$$

 $\delta\phi_2=$ (Phase measured by B-> $\pi\pi$ and isospin analysis) – (Angle of Unitary Triangle)

Analysis and experiment

	$\sin\delta\phi_2$	$A_{\pi\pi}$
In SM	0	0
With RHCC	$\frac{\mathrm{Im}[R_{\pi\pi}]}{ R_{\pi\pi} }$	$\frac{1 - R_{\pi\pi} ^2}{1 + R_{\pi\pi} ^2}$
Experiment	0.017±0.226	0.026±0.039

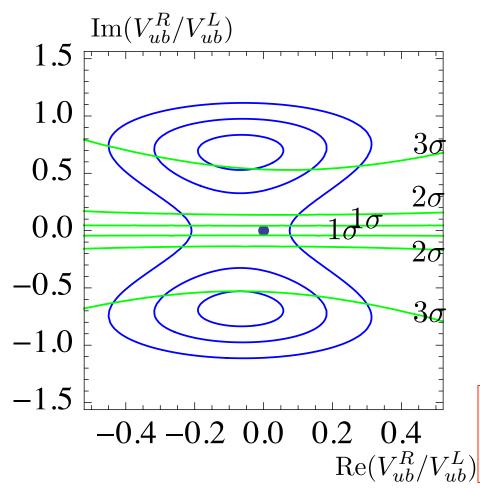

We can constrain $R_{\pi\pi}$.

$$R_{\pi\pi} = \frac{1 + (V_{ub}^R/V_{ub}^L)c_{\pi}}{1 + (V_{ub}^R/V_{ub}^L)^*c_{\pi}}$$

$$c_{\pi} : \text{complex constant}$$

We can constrain V_{ub}^R/V_{ub}^L .

(factorization approximation)


Constraint from CP violation of $B \rightarrow \pi\pi$

Green line: Constraint from B->ππ Blue line: Constraint from |Vub| black point: Standard Model

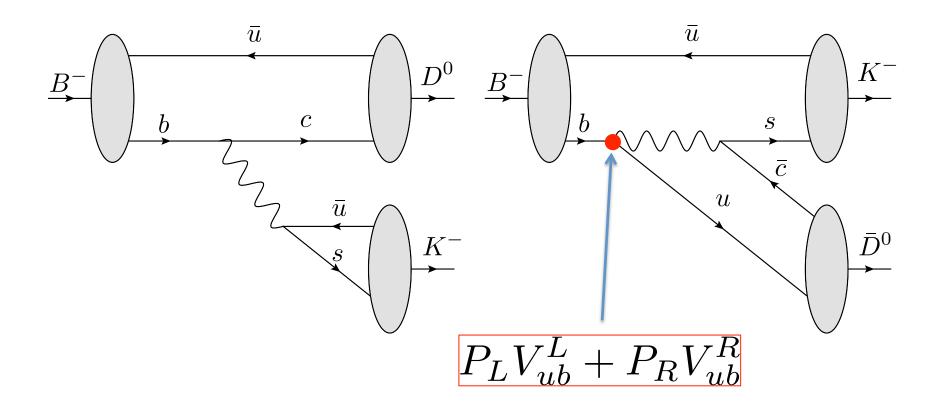
Measurements of |Vub| imply a large $|{
m Im}(V_{ub}^R/V_{ub}^L)|$. But measurement of B-> $\pi\pi$ exclude the large one.

Constraint from CP violation of $B \rightarrow \pi\pi$

Green line: Constraint from B->ππ
Blue line: Constraint from |Vub|
black point: Standard Model

Measurements of |Vub| imply a large $|{
m Im}(V_{ub}^R/V_{ub}^L)|$. But measurement of B-> $\pi\pi$ exclude the large one.

Discrepancy? $.2 \quad 0.4 \qquad \qquad \text{or} \\ \text{Re}(V_{ub}^R/V_{ub}^L) \quad \text{Effect of Factorization approximation?}$



I should analyze another decay mode.

=B->DK

Constraint from measurement of CP violation in B->DK

Diagram of B->DK

Effect of RHCC on CP violation in B->DK

2 CP violating measurement

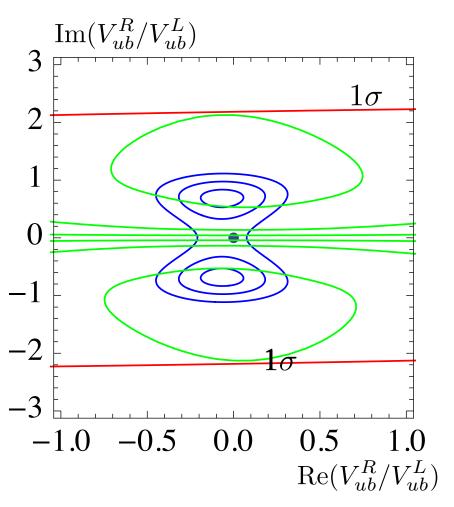
Direct CP Asymmetry
$$A_{DK} = \frac{\Gamma(B^- \to \bar{D}^0 K^-) - \Gamma(B^+ \to D^0 K^+)}{\Gamma(B^- \to \bar{D}^0 K^-) + \Gamma(B^+ \to D^0 K^+)}$$

 $\delta\phi_3=$ (Phase measured by B->DK and Dalitz Plot analysis) – (Angle of Unitary Triangle)

Analysis and experiment

	$\sin \delta \phi_3$	A_{DK}
In SM	0	0
With RHCC	$\frac{\mathrm{Im}[R_{DK}]}{ R_{DK} }$	$\frac{1 - R_{DK} ^2}{1 + R_{DK} ^2}$
Experiment	0.08±0.25	0.27±0.40

My calculation from dalitz plot analysis


We can constrain $\,R_{DK}\,$.

$$R_{DK} = \frac{1 + (V_{ub}^R/V_{ub}^L)c_{DK}}{1 + (V_{ub}^R/V_{ub}^L)^*c_{DK}}$$

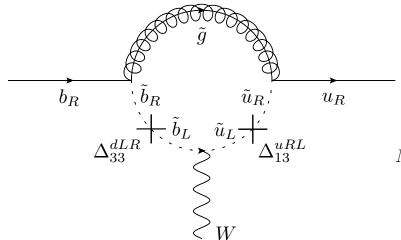
$$c_{DK}$$
: complex constant

We can constrain V^R_{ub}/V^L_{ub} . (Factorization approximation)

(phys. rev. D85, 112014)

Constraint from CP violation of $B \rightarrow DK$

Red line: Constraint from B->DK Green line: Constraint from B-> $\pi\pi$ Blue line: Constraint from |Vub| black point: Standard Model


Constraint from B->DK is very weak. But SuperBFactory will make it strong.

RHCC in MSSM

RHCC in MSSM

Reference

- A. Crivellin, Phys. Rev. D 81,031301(2010).
- A. Crivellin and U. Nierste, Phys. Rev. D 79, 035018(2009).

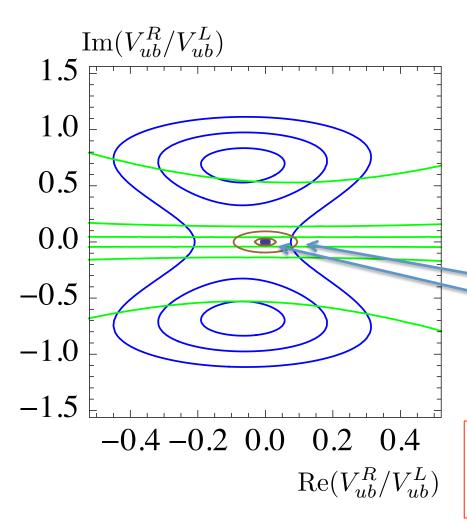
Mass matrix of down type squark. (up type one is down type one that replace d into u.

$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R}$$

$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{L} \stackrel{\tilde{u}_{L}}{\longrightarrow} u_{R}$$

$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{L} \stackrel{\tilde{u}_{L}}{\longrightarrow} u_{R}$$

$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{L} \stackrel{\tilde{u}_{L}}{\longrightarrow} u_{R}$$


$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R}$$

$$\Delta_{33}^{dLR} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R} \stackrel{\tilde{u}_{R}}{\longrightarrow} u_{R$$

I assume SUSY particle mass is same. Then we can calculate

$$V_{ub}^R = \frac{\alpha_s}{36\pi} \delta_{13}^{uRL} \delta_{33}^{dLR} \qquad \qquad \mbox{$\stackrel{\scriptstyle \times}{\times}$} \ \delta_{ij}^{qXY} = \frac{\Delta_{ij}^{\tilde{q}XY}}{\Sigma_s [M_{\tilde{q}}^2]_{ss}/6}$$

RHCC in MSSM

Brown: RH charged current by MSSM. Green line: Constraint from B-> $\pi\pi$

Blue line: Constraint from | Vub |

black point: Standard Model

$$\begin{aligned} |\delta_{13}^{uRL}\delta_{33}^{dLR}| &= 0.3\\ |\delta_{13}^{uRL}\delta_{33}^{dLR}| &= 0.1 \end{aligned}$$

Mass insertion of MSSM can NOT explain the measurement of |Vub|. But the RHCC in MSSM may affect B-> $\pi\pi$.

SUMMARY

Large ${\rm Im}(V_{ub}^R/V_{ub}^L)$ is needed for explanation of $|{\rm Vub}|$ determination.

Measurement of CP violation in B-> $\pi\pi$ may exclude large ${\rm Im}(V_{ub}^R/V_{ub}^L)$.

Constraint from B->DK is very weak now.

RHCC in MSSM may be measured in B-> $\pi\pi$.

Thank you for your attention.

Why right-handed charged current?

Right-handed charged current of b->u transition

Why b->u transition?

Tetsuya Enomoto (Osaka university)

In collaboration with Minoru Tanaka and Ryoutaro Watanabe

Charged current in SM

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} V_{CKM} d_{L} + \text{h.c.}$$

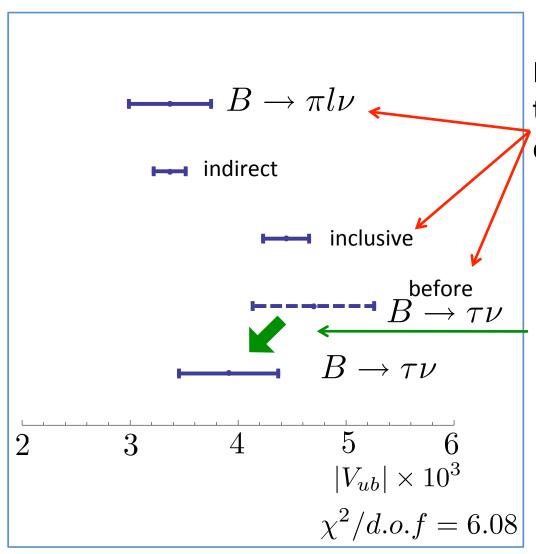
$$|V_{CKM}| = \begin{pmatrix} 0.97425(22) & 0.2252(9) & 0.00389(44) \\ 0.230(11) & 1.023(36) & 0.0406(13) \\ 0.0084(6) & 0.0387(21) & 0.88(7) \end{pmatrix}$$

Because |Vub| is the smallest, Vub component could easily be affected by new physics compared to other component.

We consider charged current in b -> u transition.

Charged current in SM

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} V_{CKM} d_{L} + \text{h.c.}$$


$$|V_{CKM}| = \begin{pmatrix} 0.97425(22) & 0.2252(9) & 0.00389(44) \\ 0.230(11) & 1.023(36) & 0.0406(13) \\ 0.0084(6) & 0.0387(21) & 0.88(7) \end{pmatrix}$$

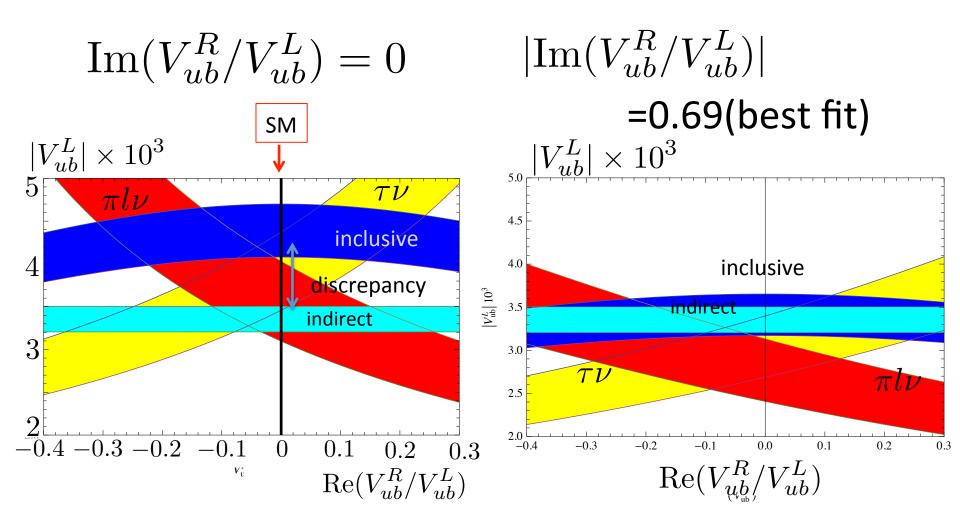
Charged current in SM is Left-handed.

We consider charged current in b -> u transition. right-handed charged current.

measurement of $|V_{ub}|$

RH charged current can remove the discrepancies between the determinations

A. Crivellin, Phys. Rev. D 81,031301(2010).


BUT

New Result

We need a check that RH charged current is utility.

Constraint of RHCC

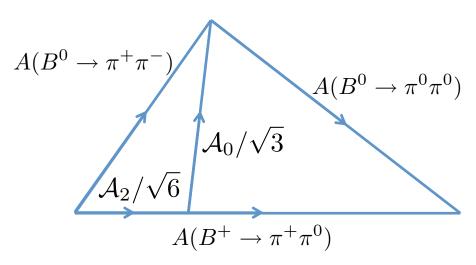
Isospin Analysis

Isospin Analysis can remove the effect of Penguin diagram from the measurement of $\phi_2=lpha$

$$A(B^0 \to \pi^+ \pi^-) = \frac{1}{\sqrt{6}} A_2 + \frac{1}{\sqrt{3}} A_0$$

$$A(B^0 \to \pi^0 \pi^0) = \sqrt{\frac{2}{3}} A_2 - \frac{1}{\sqrt{3}} A_0$$

$$A(B^+ \to \pi^+ \pi^0) = \sqrt{\frac{3}{2}} \mathcal{A}_2$$


 $\mathcal{A}_I, ar{\mathcal{A}}_I$:Amplitude to Isospin I state

If we trace right side triangle, we can know

$$z = \sqrt{2} \frac{\mathcal{A}_0}{\mathcal{A}_2}$$

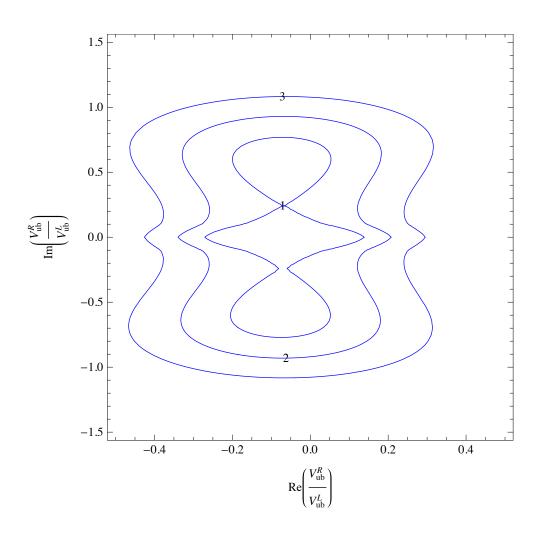
Diagrams contribute Isospin state or not.

	Tree diagram	Penguin diagram
\mathcal{A}_2	contribute	NOT contribute
\mathcal{A}_0	contribute	contribute

Isospin Analysis

Time dependent CP asymmetry

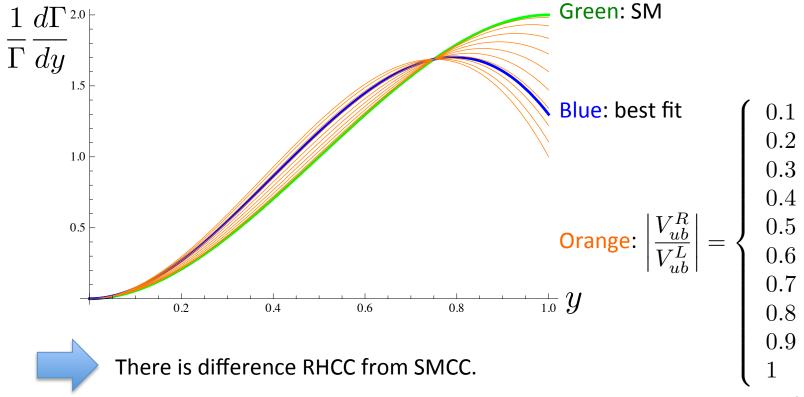
$$S_{\pi\pi} = \frac{2\text{Im}\frac{q}{p}\bar{\rho}}{1+|\bar{\rho}|^2}$$
 $\bar{\rho} = \frac{A(\bar{B}^0 \to \pi^+\pi^-)}{A(B^0 \to \pi^+\pi^-)}$

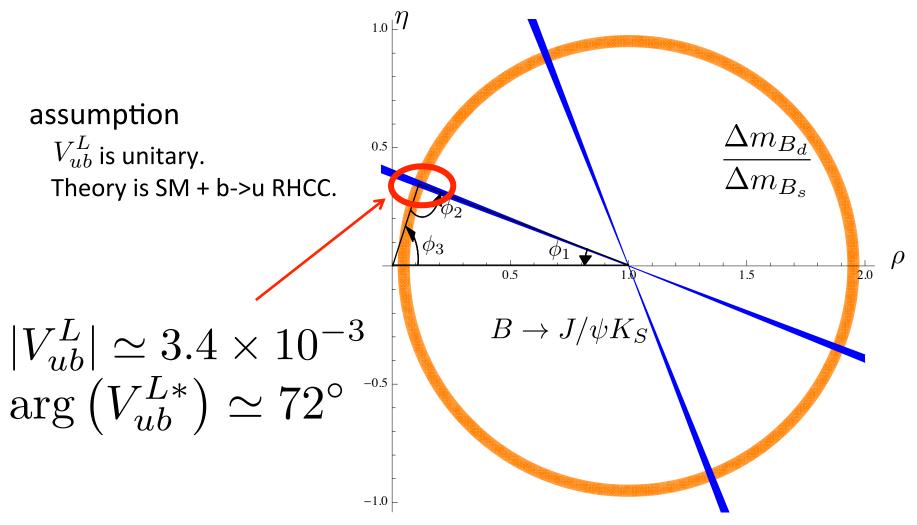

Penguin diagram contribute only \mathcal{A}_0 , and we know z. So we can extraction only A2 from $\overline{\rho}$.

$$\frac{q}{p}\bar{\rho} = \frac{q}{p}\frac{\bar{\mathcal{A}}_2}{\mathcal{A}_2} \left(\frac{1+\bar{z}}{1+z}\right) \qquad z = \sqrt{2}\frac{\mathcal{A}_0}{\mathcal{A}_2}$$

$$\stackrel{(\text{SM})}{=} e^{2i\phi_2} \left(\frac{1+\bar{z}}{1+z}\right)$$

So we can measure $\,\phi_2$ from observable $S_{\pi\pi}$.


Combine B $\rightarrow \pi\pi$ and |Vub|


Inclusive decayのlepton energy分布

 Γ : Decay rate of B->Xu l v

$$y = \frac{P_B \cdot P_l}{2m_b^2}$$

Indirect measurement of Vub

Effect of RHCC

Measurement of B->τν

Axial Vector current

$$|V_{ub}^{\tau}|^2 = |V_{ub}^L - V_{ub}^R|^2 = |V_{ub}^L|^2 \left(1 + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2 - 2\operatorname{Re}\left(\frac{V_{ub}^R}{V_{ub}^L}\right)\right)$$

Measurement of B-> π lv

Vector current

$$|V_{ub}^{\pi}|^2 = |V_{ub}^L + V_{ub}^R|^2 = |V_{ub}^L|^2 \left(1 + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2 + 2\operatorname{Re}\left(\frac{V_{ub}^R}{V_{ub}^L}\right)\right)$$

Measurement of B->Xulv

Interferrnce term is propotional to $\,m_u/m_b\,$.

$$|V_{ub}^{\text{inc}}|^2 = |V_{ub}^L|^2 + |V_{ub}^R|^2 = |V_{ub}^L|^2 \left(1 + \left|\frac{V_{ub}^R}{V_{ub}^L}\right|^2\right)$$