Summer Institute 2013, 20 August

Focus Point in Gaugino Mediation

~Reconsideration of the fine-tuning problem~

Norimi Yokozaki (Kavli IPMU)

Tsutomu. T. Yanagida and N.Y., Phys. Lett. B722, 355 (2013)

Tsutomu. T. Yanagida and N.Y., 1308.0536

Focus Point in Gaugino Mediation

~Reconsideration of the fine-tuning problem~ (Rethinking)

Norimi Yokozaki (Kavli IPMU)

Tsutomu. T. Yanagida and N.Y., Phys. Lett. B722, 355 (2013)

Tsutomu. T. Yanagida and N.Y., 1308.0536

We got an evidence of SUSY?

We got an evidence of SUSY?

We finally discovered a spin-0 particle,

Higgs boson

Hagure metal

(To discover is also difficult)

Ref. Dragon Quest

We got an evidence of SUSY?

Outline

- Introduction
- Fine-tuning and original focus point scenario
- Focus point in gaugino mediation
- Summary

Benefits of SUSY

Gauge coupling unification

SUSY primer, S. Martin

Provide a candidate for dark matter gravitino, neutraino

Benefits of SUSY

Gauge coupling unification

SUSY primer, S. Martin

• Provide a cand date for dark matter gravitino, neutraino

Benefits of SUSY

Gauge coupling unification

SUSY primer, S. Martin

- Provide a cand date for dark matter gravitino, neutraino
- Stabilization of the electroweak symmetry breaking (EWSB) scale

Without SUSY, EWSB scale is not stabilized

Without SUSY, EWSB scale is not stabilized

1, Destabilization at loop level

$$\Delta m_H^2 = -(6\lambda_{\rm self} - 6y_t^2 + \dots) \frac{\Lambda_{\rm UV}^2}{16\pi^2} + \dots \qquad {\rm Well \, known}$$
 quadratic

Well known divergence

Without SUSY, EWSB scale is not stabilized

1, Destabilization at loop level

Well known divergence

2, Destabilization at tree level

$$V = \lambda_X |X_a|^2 |H|^2$$

e.g., PQ breaking scalar, B-L breaking scalar ...

$$X_a \sim 10^9 - 10^{12} \,\text{GeV} \longrightarrow \lambda_X \sim 10^{-14} - 10^{-20}$$

better than tuning of $\theta < 10^{-10}$?

In SUSY

No quadratic divergence

In SUSY

- No quadratic divergence
- Coupling between intermediate scale, like PQ-scale, and EWSB scale can be controlled by holomorphy

In SUSY

- No quadratic divergence
- Coupling between intermediate scale, like PQ-scale, and EWSB scale can be controlled by holomorphy

e.g., PQ case (SUSY KSVZ model)

protected by holomorphy

$$W = S(X_a \bar{X}_a - f_a^2) + \mu H_u H_d + \dots$$

J. E. Kim, Phys. Rev. Lett. **43**, 103 (1979); M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B **166**, 493 (1980).

The PQ sector does't mixed with EWSB (or other) sector, if their charges are appropriately chosen

SUSY was a key ingredient to understand the electroweak symmetry breaking (EWSB)

SUSY is broken dynamically in hidden sector

SUSY was a key ingredient to understand the electroweak symmetry breaking (EWSB)

SUSY is broken dynamically in hidden sector

Gauge mediation
Gravity mediation
(Anomaly mediation)
Gaugino mediation

Soft SUSY breaking masses of O(100) GeV

SUSY was a key ingredient to understand the electroweak symmetry breaking (EWSB)

SUSY is broken dynamically in hidden sector

Gauge mediation
Gravity mediation
(Anomaly mediation)
Gaugino mediation

Soft SUSY breaking masses of O(100) GeV

The Fermi scale is obtained by radiative electroweak symmetry breaking

This picture works very well for low-energy SUSY

$$\begin{split} V &= (m_{H_u}^2 + |\mu|^2) |H_u^0|^2 + (m_{H_d}^2 + |\mu|^2) |H_d^0|^2 \\ &- B \mu H_u^0 H_d^0 + h.c. \\ &+ \frac{g_Y^2 + g^2}{8} [|H_u^0|^2 - |H_d^0|^2]^2 & \qquad \boxed{\mathsf{W} = \mu \, \mathsf{HuHd}} \\ &+ \Delta V \, \text{(radiative correction)} \end{split}$$

$$V = (m_{H_u}^2 + |\mu|^2)|H_u^0|^2 + (m_{H_d}^2 + |\mu|^2)|H_d^0|^2$$

$$-B\mu H_u^0 H_d^0 + h.c.$$

$$+\frac{g_Y^2 + g^2}{8}[|H_u^0|^2 - |H_d^0|^2]^2$$

$$+\Delta V \text{ (radiative correction)}$$

 $+\Delta V$ (radiative correction)

$$\frac{m_{\hat{Z}}^2}{2} \sim -(m_{H_u}^2 + |\mu|^2)$$

$$\frac{m_{\hat{Z}}^2}{2} = \frac{(m_{H_d}^2 + \frac{1}{2v_d} \frac{\partial \Delta V}{\partial v_d}) - (m_{H_u}^2 + \frac{1}{2v_u} \frac{\partial \Delta V}{\partial v_u}) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2,$$

$$(\tan \beta + \cot \beta)^{-1} = \frac{B\mu}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2 + \frac{1}{2v_d} \frac{\partial \Delta V}{\partial v_d} + \frac{1}{2v_u} \frac{\partial \Delta V}{\partial v_u}},$$

This picture works very well for low-energy SUSY

However, a generation of the EWSB scale seems more complicated

However, a generation of the EWSB scale seems more complicated

SUSY particles are heavier than we expected

Non-observation of SUSY signals

Moreover observed Higgs boson mass requires rather large radiative correction

The H3m error corresponds to change of the renormalization scale from Ms/2 to 2Ms

Larger mgs mus At increase both Higgs boson

Higgs mass

mass and Higgs soft mass

mg3² mu3² \tilde{t} \tilde{t}

Higgs soft mass squared

+ wave function renormalization of Hu

Figures from "SUSY primer", S. Martin

We need an elaborate choice of μ -parameter

We need an elaborate choice of μ -parameter

Approaches to the origin of the Fermi scale

 Low scale SUSY (and low messenger scale) Attractive but difficult in the current situation

 Never mind (much better than the finetuning of the cosmological constant)

Approaches to the origin of the Fermi scale

$$V \sim |F|^2 - 3 \frac{|W_0|^2}{M_P^2}$$

$$\sim m_{\text{soft}}^2 M_{\text{mess}}^2 - \frac{3|W_0|^2}{M_P^2} \qquad 10^{-120} M_P^4$$

$$(M_P^2)$$

 $m_{
m soft}^2 \sim 10^{-30} M_P^2$ (much better than the fine-cosmological constant)

Approaches to the origin of the Fermi scale

 Low scale SUSY (and low messenger scale) Attractive but difficult in the current situation

 Never mind (much better than the finetuning of the cosmological constant)

Approaches to the origin of the Fermi scale

 Low scale SUSY (and low messenger scale)

Attractive but difficult in the current situation

 Never mind (much better than tuning of the cosmological const gravitino problem

Heavy SUSY -> Flavor/CP, are relaxed

Approaches to the origin of the Fermi scale

 Low scale SUSY (and low messenger scale)

Attractive but difficult in the current situation

 Never mind (much better than tuning of the cosmological const gravitino problem

Heavy SUSY -> Flavor/CP, are relaxed

 Some relations among parameters at UV physics

Approaches to the origin of the Fermi scale

 Low scale SUSY (and low messenger scale)

Attractive but difficult in the current situation

 Never mind (much better than tuning of the cosmological const gravitino problem

Heavy SUSY -> Flavor/CP, are relaxed

 Some relations among parameters at UV phys

Focus point!

Original Focus Point

universal scalar mass gaugino mass $m_0 >> M_{1/2}$ Arises from input parameters at the GUT scale

m_{Hu}²(m_Z) becomes much smaller than expected and does not sensitive to the change of m₀
[Feng, Matchev, Moroi, 1999]

and does not sensitive to the change of m₀
[Feng, Matchev, Moroi, 1999]

Why m_{Hu}²(m_{soft}) is small?

Why m_{Hu}²(m_{soft}) is small?

looks like coincidence

$$\frac{dm_{H_u}^2}{dt} \simeq \frac{1}{16\pi^2} [6Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2) - 6g_2^2 |M_2|^2 + \dots]$$

$$\frac{dm_{U_3}^2}{dt} \simeq \frac{1}{16\pi^2} [4Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2)$$

$$-(32/3)g_3^2 M_3^2 + \dots]$$

$$\frac{dm_{Q_3}^2}{dt} \simeq \frac{1}{16\pi^2} [2Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2)$$

$$-(32/3)g_3^2 M_3^2 - 6g_2^2 M_2^2 + \dots]$$

$$\frac{dm_{H_u}^2}{dt} \simeq \frac{1}{16\pi^2} [6Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2) - 6g_2^2 |M_2|^2 + \dots]$$

$$\frac{dm_{U_3}^2}{dt} \simeq \frac{1}{16\pi^2} [4Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2)$$

$$-(32/3)g_3^2 M_3^2 + \dots]$$

$$\frac{dm_{Q_3}^2}{dt} \simeq \frac{1}{16\pi^2} [2Y_t^2 (m_{Q_3}^2 + m_{H_u}^2 + m_{U_3}^2 + A_t^2)$$

$$-(32/3)g_3^2 M_3^2 - 6g_2^2 M_2^2 + \dots]$$

Taking $A_0=0$, $m_0^2=0$

 $\bar{m}_{H_{**}}^2(Q=m_{ ext{stop}})=-|c_H|M_{1/2}^2$ We want to $\bar{m}_{U_3}^2(Q=m_{\mathrm{stop}})=+|c_u|M_{1/2}^2$ make M_{1/2} small $\bar{m}_{Q_3}^2(Q=m_{\text{stop}})=+|c_Q|M_{1/2}^2$

Let us shift boundary value $m_0=0$ to δm_0

$$\bar{m}_{H_u}^2 \to \bar{m}_{H_u}^2 + \delta m_{H_u}^2$$
 $\bar{m}_{U_3}^2 \to \bar{m}_{U_3}^2 + \delta m_{U_3}^2$
 $\bar{m}_{Q_3}^2 \to \bar{m}_{Q_3}^2 + \delta m_{Q_3}^2$

RGEs for At, M1, M2, M3 do not change

At, M1, M2, M3 do not change

$$\left. rac{d}{dt} \left[egin{array}{c} \delta m_{H_u}^2 \ \delta m_{U_3}^2 \ \delta m_{Q_3}^2 \end{array}
ight] = rac{Y_t^2}{8\pi^2} \left[egin{array}{ccc} 3 & 3 & 3 \ 2 & 2 & 2 \ 1 & 1 & 1 \end{array}
ight] \left[egin{array}{c} \delta m_{H_u}^2 \ \delta m_{U_3}^2 \ \delta m_{Q_3}^2 \end{array}
ight] \; ,$$

solving RGEs

$$\begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} = \frac{\delta m_0^2}{2} \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \exp \left[\int_0^t \frac{6Y_t^2}{8\pi^2} dt' \right] - \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}.$$

$$t \equiv \ln(Q/M_{\rm GUT})$$

$$\frac{d}{dt} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} = \frac{Y_t^2}{8\pi^2} \begin{bmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} ,$$

solving RGEs

$$\begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} = \frac{\delta m_0^2}{2} \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \exp \left[\int_0^t \frac{6Y_t^2}{8\pi^2} dt' \right] - \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}.$$

$$t \equiv \ln(Q/M_{\text{GUT}})$$

This factor is accidentally ~1/3!

for Q~Mz, Mgut~10¹⁶GeV, Yt~1

Then
$$\delta m_{H_u}^2 \sim 0$$

$$\frac{d}{dt} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_2}^2 \end{bmatrix} = \frac{Y_t^2}{8\pi^2} \begin{bmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_2}^2 \end{bmatrix} ,$$

solving RGEs

$$\begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \end{bmatrix} = \frac{\delta m_0^2}{2} \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix} \exp \left[\int_{-2}^t \frac{6Y_t^2}{9t} dt' \right] - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}.$$

This factor is a

for Q~Mz, Mgu

Then d

$$\frac{d}{dt} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} = \frac{Y_t^2}{8\pi^2} \begin{bmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} ,$$

solving RGEs

$$\begin{bmatrix} \delta m_{H_u}^2 \\ \delta m_{U_3}^2 \\ \delta m_{Q_3}^2 \end{bmatrix} = \frac{\delta m_0^2}{2} \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \exp \left[\int_0^t \frac{6Y_t^2}{8\pi^2} dt' \right] - \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}.$$

$$t \equiv \ln(Q/M_{\rm GUT})$$

Deep reason may be hidden

flavor symmetry Yt MGUT breaking scale

(more fundamental scale)

Fine-tuning measure

Defining a fine-tuning measure

$$\Delta_a = \left| \frac{\partial \ln m_{\hat{Z}}}{\partial \ln a} \right|_{m_{\hat{Z}} = m_Z} \Delta = \max(\Delta_a)$$

a is a fundamental parameter

J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. A 1, 57 (1986); R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 (1988).

e.g., mSUGRA

$$\{a_i\} = \{m_0, M_{1/2}, \mu_0, A_0, B_0\}$$

$$\Delta_{B_0} \sim (1/\tan \beta) \Delta_{\mu_0}$$

Defining a fine-tuning measure

$$\Delta_a = \left| \frac{\partial \ln m_{\hat{Z}}}{\partial \ln a} \right|_{m_{\hat{Z}} = m_Z} \Delta = \max(\Delta_a)$$

a is a fundamental parameter

J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. A 1, 57 (1986); R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 (1988).

e.g., mSUGRA

$$\{a_i\} = \{m_0, M_{1/2}, \mu_0, A_0, B_0\}$$

$$(\Delta_{\mu_0})^{-1} = \frac{m_Z^2}{\mu_0^2} \left(\frac{dm_Z^2}{d\mu^0}\right)^{-1} \sim \frac{m_Z^2}{2\mu^2} \Big|_{\mu_0}$$

With A-term

Fine-tuning is reduced to $\Delta \sim 50-100$

We would like to propose simpler model

Gaugino (dominated) mediation with fixed ratio of the gluino mass to wino mass M₂/M₃~0.4, e.g., 3/8

Focus point in Gaugino Mediation

 Fine-tuning can be reduced with a certain ratio of gluino mass to wino mass (bino mass is not so important)

Focus point in Gaugino Mediation

Fine-tuning can be reduced with a certain ratio of gluino mass to wino mass
 (bino mass is not so important)

$$m_{H_u}^2(2.5\,\mathrm{TeV}) \simeq -1.197 M_3^2 + 0.235 M_2^2 - 0.013 M_1 M_3 - 0.134 M_2 M_3 \\ + 0.010 M_1^2 - 0.027 M_1 M_2 + 0.067 m_0^2,$$

Focus point in Gaugino Mediation

Fine-tuning can be reduced with a certain ratio of gluino mass to wino mass
 (bino mass is not so important)

$$m_{H_u}^2(2.5\,\mathrm{TeV}) \simeq -1.197 M_3^2 + 0.235 M_2^2 - 0.013 M_1 M_3 - 0.134 M_2 M_3 + 0.010 M_1^2 - 0.027 M_1 M_2 + 0.067 m_0^2,$$

 $-0.006M_{1/2}^2 + 0.067m_0^2$ for $r_1 = r_3 = (3/8)$ universal

where $(M_1, M_2, M_3) = (r_1, 1, r_3)M_{1/2}$.

Focus point in

Doublet-triplet splitting problem in SU(5)_{GUT}

• Fine-tuning casolve duced with a certain

ratio of gluino mass to wino mass

GUT scale parameters

 $m_{H_u}^2 (2.5 \, \text{TeV})$

Product GUT/nonanomalous discrete Rsymmetry(later)

 $-0.134M_2M_3$

non-

~Mstop

$$-0.006M_{1/2}^2 + 0.067m_0^2 ext{ for } r_1 = r_3 = (3/8)$$
 universal

where
$$(M_1, M_2, M_3) = (r_1, 1, r_3)M_{1/2}$$
.

The running of m_{Hu}² (TeV²)

universal case

For almost same gluino mass

The running of m_{Hu}² (TeV²)

universal case

 $M_2:M_3=8:3$ case

For almost same gluino mass

Higgs boson mass @ three loop level

Figure 2: Contours of the Higgs boson mass (left panel) and Δm_h (right panel) in the unit of GeV. The red (green) lines drawn with the top mass of $m_t = 173.2$ GeV (174.2 GeV). Here, $\alpha_S(m_Z) = 0.1184$.

red: mt=173.2 GeV green: mt=174.2 GeV

Fine-tuning and Higgsino mass

Prediction

- At least Higgsino is light, which can be target at the ILC
- Bino-Higgsino dark matter if the gravitino is heavier than the neutralino

Prediction

- At least Higgsino is light, which can be target at the ILC
- Bino-Higgsino dark matter if the gravitino is heavier than the neutralino

Strong constraint from XENON100

neutralino mass

[micrOMEGAs]

Ice Cube Experiment

(but χ 10 does not decays into WW exclusively) [micrOMEGAs]

Ice Cube Experiment

(but χ 10 does not decays into WW exclusively) [micrOMEGAs]

The origin of 8:3(~0.4)

Product GUT SU(5) GUT X U(2) H

bi-fundamental $SU(3)_c \times SU(2)_L \times U(1)_Y$ field

The origin of 8:3(~0.4)

Product GUT SU(5) GUT X U(2) H

bi-fundamental $SU(3)_c \times SU(2)_L \times U(1)_Y$ field

Doublet-triplet splitting problem is solved

Approximate gauge coupling unification is satisfied small enough

$$\alpha_1^{-1} = \alpha_{GUT}^{-1} + \alpha_{1H}^{-1} \text{ (strong coupling)}$$

$$\alpha_2^{-1} = \alpha_{GUT}^{-1} + \alpha_{2H}^{-1} \quad \alpha_3^{-1} = \alpha_{GUT}^{-1}$$

The origin of 8:3(~0.4)

Product GUT SU(5)_{GUT} x U(2)_H

bi-fundamental $SU(3)_c \times SU(2)_L \times U(1)_Y$ field

$$M_1 \simeq M_{\rm GUT} + g_{\rm GUT}^2 M_{H1}/g_{H1}^2,$$
 $M_2 \simeq M_{\rm GUT} + g_{\rm GUT}^2 M_{H2}/g_{H2}^2,$
 $M_3 \simeq M_{\rm GUT},$

if $(g_{\rm GUT}^2/g_{H_2}^2)M_{H2}$ ~ Mgut

Then M₃/M₂~3/8 may arise

The origin of 8:3

 May be determined by dim(SU(2)_{adj}): dim(SU(3)_{adj})

$$M_2 = M_5/\dim(SU(2)_{\text{adj}})$$

$$M_3 = M_5/\dim(SU(3)_{\text{adj}})$$

The origin of 8:3

 May be determined by dim(SU(2)_{adj}): dim(SU(3)_{adj})

$$M_2 = M_5/\dim(SU(2)_{\text{adj}})$$

$$M_3 = M_5/\dim(SU(3)_{\text{adj}})$$

Anomaly free condition of ZNR

Suppose that there exist non-anomalous discrete R-symmetry

R parity can not forbid dim 5 proton decay operators

$$W
ightarrow rac{QQQL}{M_P}$$
 , $rac{ar{U}ar{U}ar{D}ar{E}}{M_P}$ very dangerous!

For N=even, constant term breaks Z_{NR} to R-parity (For N=odd, R-Parity is broken by constant term)

Let us focus on even number of N

Z₄R. Z₆R. Z₈R ...

Z4R, Z6R, Z8R ...

Suppose that there exist non-anomalous discrete R-symmetry

R parity can not forbid dim 5 proton decay operators

$$W
ightarrow rac{QQQL}{M_P}$$
 , $rac{ar{U}ar{U}ar{D}ar{E}}{M_P}$ very dangerous!

For N=even, constant term breaks Z_{NR} to R-parity (For N=odd, R-Parity is broken by constant term)

Let us focus on even number of N

Z₄R. Z₆R. Z₈R ...

Suppose that there exist non-anomalous

R parity can r

 $W \ni$

У

decay operators

very dangerous!

For N=even,

INR to R-parity

(For N=odd, R-Parity is broken by constant term)

Let us focus on even number of N

Z₄R, Z₆R, Z₈R ...

 μ -term is generated by Giudice Masiero mechanism

Forbid bare Hu Hd

$$r_u + r_d = 0 \mod N \pmod{r_u + r_d \neq 2}$$
.

$$\mathbf{A}_2 = 2 \mod N, \quad \mathbf{A}_3 = 6 \mod N.$$

$$Z_{NR}-SU(2)_L-SU(2)_L$$
 $Z_{NR}-SU(3)_c-SU(3)_c$

$$Z_{NR}$$
-SU(3) $_{c}$ -SU(3) $_{c}$

Z_{NR} transformation

$$\operatorname{Im}(Z/M_*) \to \operatorname{Im}(Z/M_*) + (2\pi l'/N)$$

$$\psi_i \to \psi_i \exp\left[i(r_i - 1)(2\pi l'/N)\right]$$

ri: charge of matter fermion and Higgsino

$$\frac{k_2}{32\pi^2}\int d^2\theta \frac{Z}{M_*}(W^a_\alpha)_2(W^{a\,\alpha})_2, \quad \text{wino mass}$$

$$\frac{k_3}{32\pi^2}\int d^2\theta \frac{Z}{M_*}(W^a_\alpha)_3(W^{a\,\alpha})_3, \quad \text{gluino mass}$$

conjecture

Shift of Im(Z/M*) cancels the anomaly

Z_{NR} transformation

$$\operatorname{Im}(Z/M_*) \to \operatorname{Im}(Z/M_*) + (2\pi l'/N)$$

$$\psi_i \to \psi_i \exp\left[i(r_i - 1)(2\pi l'/N)\right]$$

ri:

May be consistent with SU(5) x U(2)H

$$\frac{k_5 \cos^2 \theta + k_{2H} \sin^2 \theta}{32\pi^2} \int d^2 \theta \frac{Z}{M_*} (W_{\alpha}^a)_2 (W_{\alpha}^a)_2$$

$$\frac{k_5}{32\pi^2} \int d^2\theta \frac{Z}{M_*} (W_{\alpha}^a)_3 (W_{\alpha}^a)_3$$

conjecture

Shift of Im(Z/M*) cancels the anomaly

Z_{NR} transformation

$$\operatorname{Im}(Z/M_*) \to \operatorname{Im}(Z/M_*) + (2\pi l'/N)$$

$$\psi_i \to \psi_i \exp\left[i(r_i - 1)(2\pi l'/N)\right]$$

ri: charge of matter fermion and Higgsino

$$\frac{k_2}{32\pi^2}\int d^2\theta \frac{Z}{M_*}(W^a_\alpha)_2(W^{a\,\alpha})_2, \quad \text{wino mass}$$

$$\frac{k_3}{32\pi^2}\int d^2\theta \frac{Z}{M_*}(W^a_\alpha)_3(W^{a\,\alpha})_3, \quad \text{gluino mass}$$

conjecture

Shift of Im(Z/M*) cancels the anomaly

 $A_2 = 2 \mod N, \quad A_3 = 6 \mod N.$

$$A_2 = 2 + k_2 \mod N$$
, $A_3 = 6 + k_3 \mod N$

Anomaly cancellation: A2=A3=0 mod N

No solution with $k_2/k_3=8/3$ for Z_{4R}

 $k_2=16$, $k_3=6$ for Z_{6R}

$$\frac{k_2}{32\pi^2} \int d^2\theta \frac{Z}{M_*} (W_{\alpha}^a)_2 (W^{a\,\alpha})_2, \quad \text{wino mass}$$

$$\frac{k_3}{32\pi^2}\int d^2\theta \frac{Z}{M_*}(W^a_\alpha)_3(W^{a\,\alpha})_3, \quad \text{gluino mass}$$

$$k_2=16, k_3=6$$

 M_{wino} : $M_{gluino} = 8:3$

Summary

- Focus point in Gaugino Mediation is attractive
- If M₃/M₂~0.4 (say 3/8), the finetuning is significantly reduced
- The model is testable at ILC/ XENON1T

Another interesting thing of gaugino mediation

Adding vector-like matters enhance the Higgs boson mass even when the gluino mass is small

Figure 2: The Higgs boson mass and the normalized trilinear coupling of the stop as a function of the decoupling scale of the extra matter. The gluino mass is fixed to be $m_{\tilde{g}} = 1.2 \,\text{TeV}$. Here, $\tan \beta = 25$.

Moroi. T. Yanagida and N.Y., 1211.4676 (PLB)

Another interesting thing of gaugino mediation

Adding vector-like matters enhance the Higgs boson mass even when the gluino mass is small

Figure 2: The Higgs boson mass and the normalized trilinear coupling of the stop as a function of the decoupling scale of the extra matter. The gluino mass is fixed to be $m_{\tilde{g}} = 1.2 \,\text{TeV}$. Here, $\tan \beta = 25$.

Moroi. T. Yanagida and N.Y., 1211.4676 (PLB)

Another interesting thing of gaugino mediation

Adding vector-like matters enhance the Higgs boson mass even when the gluino mass is small

Figure 2: The Higgs boson mass and the normalized trilinear coupling of the stop as a function of the decoupling scale of the extra matter. The gluino mass is fixed to be $m_{\tilde{g}} = 1.2 \,\text{TeV}$. Here, $\tan \beta = 25$.

Moroi. T. Yanagida and N.Y., 1211.4676 (PLB)

Thank you