Lecture 111

Constraining

* RG asymptotics in weakly coupled deformations of CFTs
e SF'T asymptotics
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Goal: study RG flows (perturbatively) near CFT fixed point

Ex: free field theory with small marginal couplings
f A
wfﬁ > Br = brggAgA A + ...

Al < 1
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basic idea: A(S) is finite, modulo CC term

more precisely: all UV divergences encountered in its computation
must get reabsorbed in the running QFT couplings

a(s) = —8a in CFT limit
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1 » > (0 by unitarity
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quickly drawing conclusions
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z:z: H +><1+ X K+ crossed
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\Qz — II + )(1 + )<>( +  crossed

1




\Qz — II + )(1 + )()( +  crossed




/CZ — 11 + )(1 + )()( +  crossed
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1
= > (¥ T(p1)T(p2) + T(p1 + p2) 0)[°
v
subleading if — Z 6rO;
)\Iv BJ <K 1 1

qualification needed !



Im « is dominated by
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— S% S (BT (1) T (p2) + T(p1 + p2) [0)]°

subleading if _ Z 8;0;
)\Iv BJ < 1 I

qualification needed !

X)( like in 2D proof !



positive definite by unitarity

d
/ 45 Im o finite < 5; — 0 asymptotically

S

The theory necessarily asymptotes a CFT'!

Thursday, August 22, 2013



Thursday, August 22, 2013

For instance, in the case of perturbations of free field
theory the matrix C is given by

| 1
Or=3% “11 = 510 (41y2 6
— 1
02:(1)\11\1/, 622_244!7‘_4
1
2 4
O3 = FW/49 : C33 — 257241



= O - xd + XX

M(xz1,...,24) = (T(x)T(x2)T(x3)T(x4)) + 6*(x1—x2) (T (1)T(23)T (24)) +permutations

+6*(x1 — 22)0* (w5 — 24) (T (21T (x3)) + permutations

naively one would proceed by substituting 1" = Z B'O;
I

but we must apply more care....
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[. Naive substitution T = » ~ 3’0, can only be correct when
1

considering insertions at non-coinciding points: T; 7# T

additional contact terms appear

T(z)T'(y) = Z 81 O1(2)87 O4(y) + 6%z —y) x 2
17

indeed result T — (%JS“

dictated by
dilation Ward id. 8H<S“(x)(’)(y) o) =0z —y)(0sO(x)...) + ...

II. In general there is more than just s

T = 'O + 549,04 4+ t°00,
S —

d ~4 scalars that can mix in
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T = B'O; + 549,J4 + t°00,

) global symmetry (G of fixed point
Ty =

explicitly broken by marginal couplings \’

around free field theory: flavor group

dim O, ~ 2 exists in
* theories with weakly coupled scalars
* supersymmetry with nearly conserved currents
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Systematic treatment

GGenerating functional for composite operators

Ty < guv()

)
promote al relevant Or & A; (33) Or(x) = 57 (7) %4
couplings ) )
to local sources J L A p (aj) etc ...

Oy < My ()

W = W[g,uva )\IvAZ,lamaa . ]

n-point correlators of T can be systematically written (in terms
of correlators of the other operators) via the
local Callan-Symangzik equation. Jack, Osborn ’90
Osborn ’91
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The local Callan-Symanzik equation Jack, Osborn *0

Osborn ’91

(29“”’ g B! d

0
Av I W = _

5AA

basic idea

* by assigning suitable Weyl transformation properties to sources

owgt” = 20g"" SwAl = op!

W sources| can be made Weyl invariant up to a local anomaly term

* integrating over spacetime, one recovers the usual, ‘global’; CS equation
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easy to prove in dimensional regularization

Lo= Ly + Ly

* depends on both sources and fields * depends on sources only
* Weyl invariant * not Weyl invariant

Sw W = swLl? = A
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The unabridged local Callan-Symanzik equation

4 jn% 5 1 6 I 5 ~ a 5
/ ‘”’”{"(”“") 2 St~ i A S |
+V,0(x) IH?V”)\I 5mg(x) — 54 (5A§(:r;)] — o (x)t® 5mg(x)} W —

2m® = 2m°(0f +v5) + zn* R+ diOX 4+ ~€f,V, A VEX
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schematically

y 0 I I _
/d4xa(:c) [29“ 5gW(x)_ﬁ &I(x)—plvw 5AA(x)+”'] W =

A - AT W = /d4x0A
uv = 0’ Nuv
dilaton background 5 5
2gM" > ()—
dogHY (x) 0f2

by iterating CS eq. we obtain dilaton n-point amplitudes
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Redundancies

5 5 0 0
pv _ B v\ n®
7(@) [29 Sghv () b SN (z) Vi 0A[N () o 5"”&(37)] "
5 ) 0
Al AV _gA — [ t°
+Vyuo(x) [91V A Sme(z) 5 5Aﬁl(g;)] 7(@) om®(x)

t* < t*RO,

scheme choice

6’? . O[ — (91+91a Oa

S4 ' can be rewritten using Ward identity of explicitly broken
global symmetry

/d4:13 [VN(OSA)(;AA —o(S4- )\)IW —o(S - m)aéma W =0
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Redundancies

5 5 0 0
pv _ B v\ n®
7(@) [29 Sghv () b SN (z) Vi 0A[N () o 5"”&(37)] "
5 ) 0
Al AV _gA — [ e
+Vyuo(x) [91V A Sme(z) 5 5Aﬁl(g;)] 7(@) om®(x)

t* < t*RO,

scheme choice

6’? . O[ — (91+91a Oa

S4 ' can be rewritten using Ward identity of explicitly broken
global symmetry

/d4:13 [VN(OSA)(;AA —o(S4- )\)IW —o(S - m)aéma W =0
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Redundancies

5 5 0 0
pv _ B v\ n®
7(@) [29 Sghv () b SN (z) Vi 0A[N () o 5"”&(37)] "
5 ) 0
a7y I _ QA — [] ta
+Vyuo(x) [91V A Sme(z) 5 5Aﬁl(g;)] 7(@) om®(x)

t* < t*RO,

scheme choice

6’? . O[ — (91+91a Oa

S4 ' can be rewritten using Ward identity of explicitly broken
global symmetry

/d4:13 [VN(OSA)(;AA —o(S4- )\)IW —o(S - m)aéma W =0
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0 ~ 0

[ o) 20 ey = B iy ~ PN iy 1 ey V= [ 74

Notice: the trace of T is not controlled by naive [3-function!

Tﬁ — BIO]—I—...

T # 'O + ...
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0 0

_ ([ pIpJ . B Iq pJ
(BB é(r —y)B'0rB 5)\J(y)>W

ON () M (y)

B'B’O;(x)0;(y) + 6(x —y)(B'91B")O ()



w Y= Y X o

1
Ima(s) = — > [(P|B' (67 + 8:B”)Os(p1 +p2) + B' B’ O1(p1)0(p2)|0) |
W

1
Grj = S—QZ<O‘O[—|—8[BLOL—I—BLO[OL|\IJ><\IJ‘OJ—I—6JBK0K—I—BKOJOK|O> >0
P

Gryg >0 for a small perturbation of CFT
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RG invariance

tma(s) = B (A() B’ (AMw) Gra(1/v/s A1) = BIAVE)B? (A3)) Grs(1, A(V))

a(s2) — als) = = [ Zimals)
sdi‘l(;) — B(5)B”(5)G1(s)

4D version of ‘local’ Zamolodchikov theorem

Thursday, August 22, 2013



Remarkably

same equation obtained by Wess-Zumino consistency condition
Jack, Osborn 90
ASS ATPIW = 0

o1

however without insight provided by dilaton trick was not obvious
how to prove Gy 2 0 is true beyond perturbation theory
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* UV and IR asymptotics must satisfy B! — 5—’ — (S‘ : )\)I — ()

% these asymptotics are CFT’s since 7} = B 'O;

* however a computation in a standard scheme RG-flow would

look like a limit cycle Bl = (S : )\)I = ()

confirmed by explicit computation, Fortin, Grinstein, Stergiou 12
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illustration of 5 versus B in O(N) scalar theory

A
Lint = ike PP, PPy = NjjreOijne

using operator language

®,...9,,] = renormalized composite operator
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0S
j 5(1)2,]

® T(x) = BijrelOijre] + Tij[®  Si0ulJi;] + ai0[@; ]

0S5 . .
© (N-N)ijrelOijrr] + Nij ([ij 5@] 1 3M[ij]> — 0 Ward identity
Nij = —Ny;

coefhicients defined modulo reparametrization

Osborn 91

3 family of Callan-Symanzik eqs. satisfied by same theory !

Thursday, August 22, 2013



= Oy I Vg

0S
j 5(1)2,]

® T(x) = BijrelOijre] + Tij[®  Si0ulJi;] + ai0[@; ]

0S5 . .
© (N-N)ijrelOijrr] + Nij ([ij 5@] 1 3M[ij]> — 0 Ward identity
Nij = —Ny;

coefhicients defined modulo reparametrization

Osborn 91

3 family of Callan-Symanzik eqs. satisfied by same theory !

Thursday, August 22, 2013



= Oy I Vg

0S
j 5(1)2,]

® T(x) = BijrelOijre] + Tij[® F Si0ulJi;] + aiU][@0;]

0S5 . .
© (N-N)ijrelOijrr] + Nij ([ij 5@] 1 3M[ij]> — 0 Ward identity
Nij = —Ny;

coefhicients defined modulo reparametrization

Osborn 91

3 family of Callan-Symanzik eqs. satisfied by same theory !

Thursday, August 22, 2013



0S5
j 5@]

‘fix gauge’ T(x) = Bijke|Oijke] + Gij|P

- a;; L[ PPy ]

Ni; = =55 Biike = Bijke — (5 N)ijke Gij = L'ij — 5ij

e UV and IR asymptotics must satisfy Bijre = Bijre — (S - N)ijre = 0

% these asymptotics are CFT’s

* however a computation in a standard scheme RG-flow would

look like alimitcycle 3 = (S5-A) # 0

confirmed by explicit computation, Fortin, Grinstein, Stergiou 12
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Corollary: perturbative SFTs are ruled out

An SFT would have the following coefhicients in an arbitrary scheme

~ ~

5ijk£ — (S°)\)z’jk£ Sz‘j 7& Sij

can choose a ‘gauge’ where

T = 0+ (S— S)wﬁu[{]{;] + e.0.1m

e ——
= 0,V*
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Non perturbative argument contra 4D SFTs

|
®
|

Ima(s) = const

1 2
ey O = 5 2 WITE)T @) + T+ p2) )] =
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by unitarity T{T(pl)T(pg)} + T (p1 +p2) = 0

* Pi1 et P2 arenot arbitrary: p% — pg — ()
cannot yet directly infer T{T(z1)T(x2)} + 6*(z1 — 22) T(z1) = 0

and conclude T is trivial

* yet the matrix elements should be very peculiar

(U|T(p1)T (p2) +T(p1 +p2)|0) = 0

0 =0,1,2,... (=0

(W, £ 2> 1T (p1)T(p2) |0) = 0
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The importance of Unitarity

* Non-unitary SFT: massless vector without gauge invariance

h .
4 / pr 4 [ 2 Coleman, Jackiw 1971
/ dx < :‘“/F 2 (VNA ) Riva, Cardy 2005

virial current VH = h A FHY

3
A,

partial cross section # () (W T(p1)T(p2) + T(p1 +p2)[0) # O

total cross section = () > K| T(p1)T(p2) + T(p1 + p2) 0)]* = 0
v
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Summary

*Finiteness of RG flow of dilaton scattering amplitude Powerful
constraint
eUnitarity on RG-flow

4 Perturbative theories
4 Small deformations of strongly coupled CFTs

P Az}
U\ uv

O | ¢

L L

/\l /\]
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Summary

*Finiteness of RG flow of dilaton scattering amplitude Powerful
constraint
eUnitarity on RG-flow

4 Perturbative theories
4 Small deformations of strongly coupled CFTs

the only possible asymptotics are CFTs
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4 Generalcase: 1 = T[f must be almost trivial

(U T (p1)T(p2) +T(p1+p2)|0) =0 VW P

very close to implying
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T =0 but not there yet

— DN

DN DN



