## Lecture III

## Constraining

- RG asymptotics in weakly coupled deformations of CFTs
- SFT asymptotics

Goal: study RG flows (perturbatively) near CFT fixed point Ex: free field theory with small marginal couplings


$$
\beta_{I}=b_{I J K} \lambda_{J} \lambda_{K}+\ldots
$$

$\left|\lambda_{I}\right| \ll 1$

## basic idea: $A(s)$ is finite, modulo CC term

more precisely: all UV divergences encountered in its computation must get reabsorbed in the running QFT couplings

$$
A(s)=\alpha(s) s^{2}
$$

$$
\alpha(s) \equiv \alpha(\lambda(s))
$$

$$
\alpha(s)=-8 a \quad \text { in CFT limit }
$$



$$
\bar{\alpha}(s) \equiv \frac{1}{\pi} \int_{0}^{\pi} d \theta \alpha\left(s e^{i \theta}\right)
$$

$$
\bar{\alpha}\left(s_{2}\right)-\bar{\alpha}\left(s_{1}\right)=\frac{2}{\pi} \int_{s_{1}}^{s_{2}} \frac{d s}{s} \operatorname{Im} \alpha(s) \longrightarrow \geq 0 \quad \text { by unitarity }
$$

## quickly drawing conclusions



Thursday, August 22, 2013




$$
\left.\operatorname{Im} \alpha(s)=|\nearrow|^{2}=\frac{1}{s^{2}} \sum_{\Psi}\left|\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)\right| 0\right\rangle\left.\right|^{2}
$$

$$
=\sum_{I} \beta_{I} \mathcal{O}_{I}
$$



$$
\left.\operatorname{Im} \alpha(s)=|\lambda|^{\mathbf{2}}=\frac{1}{s^{2}} \sum_{\Psi}\left|\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)\right| 0\right\rangle\left.\right|^{2}
$$

subleading if

$$
\lambda_{I}, \beta_{J} \ll 1
$$

$$
=\sum_{I} \beta_{I} \mathcal{O}_{I}
$$

qualification needed!



$$
\begin{aligned}
& \text { subleading if } \\
& \lambda_{I}, \beta_{J} \ll 1
\end{aligned} \quad=\sum_{I} \beta_{I} \mathcal{O}_{I}
$$

qualification needed!
$\operatorname{Im} \alpha$ is dominated by

like in 2 D proof !!


$$
\operatorname{Im} \alpha=\sum_{I J} \beta_{I} \beta_{J}[\underbrace{\frac{\operatorname{Im}\left\langle\mathcal{O}_{I} \mathcal{O}_{J}\right\rangle}{s^{2}}}+O(\lambda)]
$$

$C_{I J} \quad$ positive definite by unitarity

$$
\int \frac{d s}{s} \operatorname{Im} \alpha \quad \text { finite } \quad \longrightarrow \quad \beta_{I} \rightarrow 0 \quad \text { asymptotically }
$$

The theory necessarily asymptotes a CFT!

For instance, in the case of perturbations of free field theory the matrix C is given by

$$
\begin{aligned}
\mathcal{O}_{1} & =\frac{1}{4!} \Phi^{4}, & c_{11} & =\frac{1}{2^{10}(4!)^{2} \pi^{6}} \\
\mathcal{O}_{2} & =\Phi \bar{\Psi} \Psi, & c_{22} & =\frac{1}{2^{4} 4!\pi^{4}} \\
\mathcal{O}_{3} & =F_{\mu \nu}^{2} / 4 g^{4}, & c_{33} & =\frac{1}{2^{5} \pi^{2} g^{4}}
\end{aligned}
$$


$\mathcal{M}\left(x_{1}, \ldots, x_{4}\right)=\left\langle T\left(x_{1}\right) T\left(x_{2}\right) T\left(x_{3}\right) T\left(x_{4}\right)\right\rangle+\delta^{4}\left(x_{1}-x_{2}\right)\left\langle T\left(x_{1}\right) T\left(x_{3}\right) T\left(x_{4}\right)\right\rangle+$ permutations

$$
+\delta^{4}\left(x_{1}-x_{2}\right) \delta^{4}\left(x_{3}-x_{4}\right)\left\langle T\left(x_{1} T\left(x_{3}\right)\right\rangle+\right.\text { permutations }
$$

naively one would proceed by substituting

$$
T=\sum_{I} \beta^{I} \mathcal{O}_{I}
$$

## but we must apply more care....

I. Naive substitution $T=\sum_{I} \beta^{I} \mathcal{O}_{I}$ can only be correct when considering insertions at non-coinciding points: $x_{i} \neq x_{j}$ additional contact terms appear

$$
T(x) T(y)=\sum_{I J} \beta^{I} \mathcal{O}_{I}(x) \beta^{J} \mathcal{O}_{J}(y)+\delta^{4}(x-y) \times ?
$$

indeed result
dictated by
dilation Ward id.

$$
\begin{aligned}
& \quad T=\partial_{\mu} S^{\mu} \\
& \partial_{\mu}\left\langle S^{\mu}(x) \mathcal{O}(y) \ldots\right\rangle=\delta(x-y)\left\langle\delta_{S} \mathcal{O}(x) \ldots\right\rangle+\ldots
\end{aligned}
$$

II. In general there is more than just $\beta$ 's

$$
T=\beta^{I} \mathcal{O}_{I}+S^{A} \underbrace{\partial_{\mu} J_{A}^{\mu}+t^{a} \square \mathcal{O}_{a}}
$$

$\mathrm{d} \sim 4$ scalars that can mix in

$$
T=\beta^{I} \mathcal{O}_{I}+S^{A} \partial_{\mu} J_{A}^{\mu}+t^{a} \square \mathcal{O}_{a}
$$

global symmetry $G$ of fixed point explicitly broken by marginal couplings $\lambda^{I}$
around free field theory: flavor group
$\operatorname{dim} \mathcal{O}_{a} \sim 2$
exists in

- theories with weakly coupled scalars
- supersymmetry with nearly conserved currents


## Systematic treatment

Generating functional for composite operators

$$
\begin{array}{ccc} 
& T_{\mu \nu} & \leftrightarrow g_{\mu \nu}(x) \\
\begin{array}{c}
\text { promote all relevant } \\
\text { couplings } \\
\text { to local sources }
\end{array} & \mathcal{O}_{I} & \leftrightarrow \lambda_{I}(x) \\
J_{\mu}^{A} & \leftrightarrow A_{\mu}^{A}(x) & \mathcal{O}_{I}(x)=\frac{\delta}{\delta \lambda_{I}(x)} W \\
& \mathcal{O}_{a} \leftrightarrow m_{a}(x) & \text { etc } \ldots \\
& \\
W \equiv W\left[g_{\mu \nu}, \lambda^{I}, A_{\mu}^{A}, m_{a}, \ldots\right]
\end{array}
$$

n -point correlators of T can be systematically written (in terms of correlators of the other operators) via the
local Callan-Symanzik equation Jack, Osborn'90 Osborn '91

The local Callan-Symanzik equation

$$
\left(2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}}-\beta^{I} \frac{\delta}{\delta \lambda_{I}}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}}+\ldots\right) W=\mathcal{A}=\text { local }
$$

basic idea

- by assigning suitable Weyl transformation properties to sources

$$
\delta_{W} g^{\mu \nu}=2 \sigma g^{\mu \nu} \quad \delta_{W} \lambda^{I}=\sigma \beta^{I}
$$

$W$ [sources] can be made Weyl invariant up to a local anomaly term

- integrating over spacetime, one recovers the usual, 'global', CS equation
easy to prove in dimensional regularization

$$
\mathcal{L}_{0}=\mathcal{L}_{0}^{(1)}+\mathcal{L}_{0}^{(2)}
$$

- depends on both sources and fields
- Weyl invariant
- depends on sources only
- not Weyl invariant

$$
\delta_{W} W=\delta_{W} \mathcal{L}_{0}^{(2)}=\mathcal{A}
$$

## The unabridged local Callan-Symanzik equation

$$
\begin{aligned}
& \int d^{4} x\left\{\sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+\right. \\
& \left.+\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}\right\} W= \\
& \\
& =\int d^{4} x \sigma(x) \mathcal{A}(x) \\
& 2 \tilde{m}^{a}=2 m^{b}\left(\delta_{b}^{a}+\gamma_{b}^{a}\right)+\frac{1}{3} \eta^{a} R+d_{I}^{a} \square \lambda^{I}+\frac{1}{2} \epsilon_{I J}^{a} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}
\end{aligned}
$$

## schematically

$$
\int d^{4} x \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\ldots\right] W=\int d^{4} x \sigma(x) \mathcal{A}
$$

$$
\left[\Delta_{\sigma}^{g}-\Delta_{\sigma}^{\beta}\right] W=\int d^{4} x \sigma \mathcal{A}
$$

$$
g_{\mu \nu}=\Omega^{2} \eta_{\mu \nu}
$$

dilaton background

$$
2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)} \rightarrow \Omega \frac{\delta}{\delta \Omega}
$$

by iterating CS eq. we obtain dilaton $n$-point amplitudes

## Redundancies

$$
\begin{array}{rlr}
\sigma(x) & {\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+} \\
& +\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)} & \\
t^{a} \leftrightarrow t^{a} R \mathcal{O}_{a} & & t^{a}=0 \\
\theta_{I}^{a}: \mathcal{O}_{I} \rightarrow \mathcal{O}_{I}+\theta_{I a} \square \mathcal{O}_{a} & \text { scheme choice } & \theta_{I}^{a}=0
\end{array}
$$

$S^{A}$ : can be rewritten using Ward identity of explicitly broken global symmetry

$$
\hat{S} \equiv S^{A} T_{A}
$$

$$
\int d^{4} x\left[\nabla_{\mu}\left(\sigma S^{A}\right) \frac{\delta}{\delta A_{\mu}^{A}}-\sigma\left(\hat{S}^{A} \cdot \lambda\right)^{I} \frac{\delta}{\delta \lambda^{I}}-\sigma(\hat{S} \cdot m)^{a} \frac{\delta}{\delta m^{a}}\right] W=0
$$

## Redundancies

$$
\begin{aligned}
& \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+ \\
& \quad+\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}
\end{aligned}
$$

$$
t^{a} \leftrightarrow t^{a} R \mathcal{O}_{a}
$$

$$
t^{a}=0
$$

## scheme choice

$$
\theta_{I}^{a}=0
$$

$S^{A}$ : can be rewritten using Ward identity of explicitly broken global symmetry

$$
\hat{S} \equiv S^{A} T_{A}
$$

$$
\int d^{4} x\left[\nabla_{\mu}\left(\sigma S^{A}\right) \frac{\delta}{\delta A_{\mu}^{A}}-\sigma\left(\hat{S}^{A} \cdot \lambda\right)^{I} \frac{\delta}{\delta \lambda^{I}}-\sigma(\hat{S} \cdot m)^{a} \frac{\delta}{\delta m^{a}}\right] W=0
$$

## Redundancies

$$
\begin{array}{rlr}
\sigma(x) & {\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+} \\
& +\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)} \\
t^{a} \leftrightarrow t^{a} R \mathcal{O}_{a} & & \\
\theta_{I}^{a}: \mathcal{O}_{I} \rightarrow \mathcal{O}_{I}+\theta_{I a} \square \mathcal{O}_{a} & \text { scheme choice } & t^{a}=0 \\
& & \theta_{I}^{a}=0
\end{array}
$$

$S^{A}$ : can be rewritten using Ward identity of explicitly broken global symmetry

$$
\hat{S} \equiv S^{A} T_{A}
$$

$$
\int d^{4} x\left[\nabla_{\mu}\left(\sigma S^{A}\right) \frac{\delta}{\delta A_{\mu}^{A}}-\sigma\left(\hat{S}^{A} \cdot \lambda\right)^{I} \frac{\delta}{\delta \lambda^{I}}-\sigma(\hat{S} \cdot m)^{a} \frac{\delta}{\delta m^{a}}\right] W=0
$$

$$
\begin{aligned}
& \int \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-B^{I} \frac{\delta}{\delta \lambda^{I}(x)}-P_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{M}^{a} \frac{\delta}{\delta m^{a}(x)}\right] W=\int \sigma \mathcal{A} \\
& B^{I}=\beta^{I}-(\hat{S} \cdot \lambda)^{I} \\
& \tilde{M}^{a}=\tilde{m}^{a}-(\hat{S} \cdot \tilde{m})^{a} \\
& P_{I}^{A}=\rho_{I}^{A}+\partial_{I} S^{A}
\end{aligned}
$$

Notice: the trace of T is not controlled by naive $\beta$-function!

$$
\begin{aligned}
T_{\mu}^{\mu} & =B^{I} \mathcal{O}_{I}+\ldots \\
T_{\mu}^{\mu} & \neq \beta^{I} \mathcal{O}_{I}+\ldots
\end{aligned}
$$



$$
\begin{gathered}
T(x)=B^{I} \frac{\delta}{\delta \lambda^{I}(x)} W \\
B^{I} \mathcal{O}_{I}(x)
\end{gathered}
$$



$$
\begin{aligned}
& T(x) T(y)=\left(B^{I} B^{J} \frac{\delta}{\delta \lambda^{I}(x)} \frac{\delta}{\delta \lambda^{J}(y)}+\delta(x-y) B^{I} \partial_{I} B^{J} \frac{\delta}{\delta \lambda^{J}(y)}\right) W \\
& B^{I} B^{J} \mathcal{O}_{I}(x) \mathcal{O}_{J}(y)+\delta(x-y)\left(B^{I} \partial_{I} B^{J}\right) \mathcal{O}_{J}(x)
\end{aligned}
$$



$$
\begin{aligned}
\operatorname{Im} \alpha(s) & \left.=\frac{1}{s^{2}} \sum_{\Psi}\left|\langle\Psi| B^{I}\left(\delta_{I}^{J}+\partial_{I} B^{J}\right) \mathcal{O}_{J}\left(p_{1}+p_{2}\right)+B^{I} B^{J} \mathcal{O}_{I}\left(p_{1}\right) \mathcal{O}_{J}\left(p_{2}\right)\right| 0\right\rangle\left.\right|^{2} \\
& =B^{I} B^{J} G_{I J}
\end{aligned}
$$

$$
G_{I J}=\frac{1}{s^{2}} \sum_{\Psi}\langle 0| \mathcal{O}_{I}+\partial_{I} B^{L} \mathcal{O}_{L}+B^{L} \mathcal{O}_{I} \mathcal{O}_{L}|\Psi\rangle\langle\Psi| \mathcal{O}_{J}+\partial_{J} B^{K} \mathcal{O}_{K}+B^{K} \mathcal{O}_{J} \mathcal{O}_{K}|0\rangle \geq 0
$$

$G_{I J}>0 \quad$ for a small perturbation of CFT

## RG invariance

$$
\operatorname{Im} \alpha(s)=B^{I}(\lambda(\mu)) B^{J}(\lambda(\mu)) G_{I J}(\mu / \sqrt{s}, \lambda(\mu))=B^{I}(\lambda(\sqrt{s})) B^{J}(\lambda(\sqrt{s})) G_{I J}(1, \lambda(\sqrt{s}))
$$

$$
\bar{\alpha}\left(s_{2}\right)-\bar{\alpha}\left(s_{1}\right)=\frac{2}{\pi} \int_{s_{1}}^{s_{2}} \frac{d s}{s} \operatorname{Im} \alpha(s)
$$

$$
s \frac{d \bar{\alpha}(s)}{d s}=B^{I}(s) B^{J}(s) G_{I J}(s)
$$

4D version of 'local' Zamolodchikov theorem

## Remarkably

same equation obtained by Wess-Zumino consistency condition


$$
\left[\Delta_{\sigma_{1}}^{C S}, \Delta_{\sigma_{2}}^{C S}\right] W=0
$$

however without insight provided by dilaton trick was not obvious how to prove $\mathrm{G}_{\mathrm{IJ}} \geq 0$ is true beyond perturbation theory

- UV and IR asymptotics must satisfy $\quad B^{I}=\beta^{I}-(\hat{S} \cdot \lambda)^{I}=0$
$\star$ these asymptotics are CFT's since $\quad T_{\mu}^{\mu}=B^{I} \mathcal{O}_{I}$
- however a computation in a standard scheme RG-flow would look like a limit cycle $\quad \beta^{I}=(\hat{S} \cdot \lambda)^{I} \neq 0$
confirmed by explicit computation, Fortin, Grinstein, Stergiou 'ı2


# illustration of $\beta$ versus B in $O(N)$ scalar theory 

$$
\mathcal{L}_{i n t}=\frac{\lambda_{i j k \ell}}{4} \Phi_{i} \Phi_{j} \Phi_{k} \Phi_{\ell} \equiv \lambda_{i j k \ell} \mathcal{O}_{i j k \ell}
$$

using operator language
$\left[\Phi_{1} \ldots \Phi_{n}\right] \equiv$ renormalized composite operator

$$
T(x)=\beta_{i j k \ell}\left[\mathcal{O}_{i j k \ell}\right]+\Gamma_{i j}\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+S_{i j} \partial_{\mu}\left[J_{i j}^{\mu}\right]+a_{i j} \square\left[\Phi_{i} \Phi_{j}\right]
$$

$$
(N \cdot \lambda)_{i j k \ell}\left[\mathcal{O}_{i j k l}\right]+N_{i j}\left(\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+\partial_{\mu}\left[J_{i j}^{\mu}\right]\right)=0 \quad \text { Ward identity }
$$

$$
N_{i j}=-N_{j i}
$$

coefficients defined modulo reparametrization

$$
\beta_{i j k \ell} \rightarrow \beta_{i j k \ell}+(N \cdot \lambda)_{i j k \ell}, \quad \Gamma_{i j} \rightarrow \Gamma_{i j}+N_{i j}, \quad S_{i j} \rightarrow S_{i j}+N_{i j}
$$

Osborn '9I
$\exists$ family of Callan-Symanzik eqs. satisfied by same theory !

$$
=\delta_{i j}+\gamma_{i j}
$$

$$
T(x)=\beta_{i j k \ell}\left[\mathcal{O}_{i j k \ell}\right]+\Gamma_{i j}\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+S_{i j} \partial_{\mu}\left[J_{i j}^{\mu}\right]+a_{i j} \square\left[\Phi_{i} \Phi_{j}\right]
$$

$$
(N \cdot \lambda)_{i j k \ell}\left[\mathcal{O}_{i j k l}\right]+N_{i j}\left(\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+\partial_{\mu}\left[J_{i j}^{\mu}\right]\right)=0 \quad \text { Ward identity }
$$

$$
N_{i j}=-N_{j i}
$$

coefficients defined modulo reparametrization

$$
\beta_{i j k \ell} \rightarrow \beta_{i j k \ell}+(N \cdot \lambda)_{i j k \ell}, \quad \Gamma_{i j} \rightarrow \Gamma_{i j}+N_{i j}, \quad S_{i j} \rightarrow S_{i j}+N_{i j}
$$

$\exists$ family of Callan-Symanzik eqs. satisfied by same theory !

$$
=\delta_{i j}+\gamma_{i j}
$$

$$
T(x)=\beta_{i j k \ell}\left[\mathcal{O}_{i j k \ell}\right]+\Gamma_{i j}\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+S_{i j} \partial_{\mu}\left[J_{i j}^{\mu}\right]+a_{i j} \square\left[\Phi_{i} \Phi_{j}\right]
$$

$$
(N \cdot \lambda)_{i j k \ell}\left[\mathcal{O}_{i j k l}\right]+N_{i j}\left(\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+\partial_{\mu}\left[J_{i j}^{\mu}\right]\right)=0 \quad \text { Ward identity }
$$

$$
N_{i j}=-N_{j i}
$$

coefficients defined modulo reparametrization

$$
\beta_{i j k \ell} \rightarrow \beta_{i j k \ell}+(N \cdot \lambda)_{i j k \ell}, \quad \Gamma_{i j} \rightarrow \Gamma_{i j}+N_{i j}, \quad S_{i j} \rightarrow S_{i j}+N_{i j}
$$

Osborn '9I
$\exists$ family of Callan-Symanzik eqs. satisfied by same theory !

$$
T(x)=B_{i j k \ell}\left[\mathcal{O}_{i j k \ell}\right]+G_{i j}\left[\Phi_{j} \frac{\delta S}{\delta \Phi_{i}}\right]+a_{i j} \square\left[\Phi_{i} \Phi_{j}\right]
$$

$$
N_{i j}=-S_{i j} \quad B_{i j k \ell}=\beta_{i j k \ell}-(S \cdot \lambda)_{i j k \ell} \quad G_{i j}=\Gamma_{i j}-S_{i j}
$$

- UV and IR asymptotics must satisfy $\quad B_{i j k \ell}=\beta_{i j k \ell}-(S \cdot \lambda)_{i j k \ell}=0$
$\star$ these asymptotics are CFT's
- however a computation in a standard scheme RG-flow would look like a limit cycle $\quad \beta=(S \cdot \lambda) \neq 0$


## Corollary: perturbative SFTs are ruled out

An SFT would have the following coefficients in an arbitrary scheme

$$
\beta_{i j k \ell}=(\tilde{S} \cdot \lambda)_{i j k \ell} \quad S_{i j} \neq \tilde{S}_{i j}
$$

can choose a 'gauge' where

$$
T=0+(\underbrace{S-\tilde{S})_{i j} \partial_{\mu}\left[J_{i j}^{\mu}\right]}_{\equiv \partial_{\mu} V^{\mu}}+\text { e.o.m }
$$

Non perturbative argument contra 4 D SFTs
$\operatorname{Im} a(s)=| \rangle^{2}=C=\mathrm{const}$
$\left.\begin{array}{c}\begin{array}{c}\text { absence of } \\ \text { divergences }\end{array}\end{array} C=\frac{1}{s^{2}} \sum_{\Psi}\left|\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)\right| 0\right\rangle\left.\right|^{2}=0$
by unitarity

$$
\mathrm{T}\left\{T\left(p_{1}\right) T\left(p_{2}\right)\right\}+T\left(p_{1}+p_{2}\right)=0
$$

$p_{1} \quad$ et $\quad p_{2}$ are not arbitrary: $p_{1}^{2}=p_{2}^{2}=0$
cannot yet directly infer $\mathrm{T}\left\{T\left(x_{1}\right) T\left(x_{2}\right)\right\}+\delta^{4}\left(x_{1}-x_{2}\right) T\left(x_{1}\right)=0$ and conclude T is trivial

- yet the matrix elements should be very peculiar

$$
\begin{aligned}
& \langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)|0\rangle=0 \\
& \ell=0,1,2, \ldots \quad \ell=0 \\
& \quad\langle\Psi, \ell \geq 1| T\left(p_{1}\right) T\left(p_{2}\right)|0\rangle=0
\end{aligned}
$$

- Non-unitary SFT: massless vector without gauge invariance

$$
S=\int d^{4} x \sqrt{-\hat{g}}\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{h}{2}\left(\nabla_{\mu} A^{\mu}\right)^{2}\right)
$$

$$
\text { virial current } \quad V^{\mu}=h A_{\nu} F^{\mu \nu}
$$



partial cross section $\neq 0$ $\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)|0\rangle \neq 0$ total cross section $=0$

$$
\left.\sum_{\Psi}\left|\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)\right| 0\right\rangle\left.\right|^{2}=0
$$

## Summary

-Finiteness of RG flow of dilaton scattering amplitude - Unitarity

Powerful constraint on RG-flow
$\star$ Perturbative theories
$\uparrow$ Small deformations of strongly coupled CFTs


## Summary

-Finiteness of RG flow of dilaton scattering amplitude - Unitarity

Powerful constraint on RG-flow
$\checkmark$ Perturbative theories
$\uparrow$ Small deformations of strongly coupled CFTs

the only possible asymptotics are CFTs
$\downarrow$ General case: $T \equiv T_{\mu}^{\mu} \quad$ must be almost trivial

$$
\langle\Psi| T\left(p_{1}\right) T\left(p_{2}\right)+T\left(p_{1}+p_{2}\right)|0\rangle=0 \quad \forall \Psi \quad p_{1}^{2}=p_{2}^{2}=0
$$

very close to implying $T_{\mu}^{\mu}=0 \quad$ but not there yet

