Lepton Flavor Violating Higgs Decays in Supersymmetry without R Parity

Yifan Cheng

Department of Physics National Central University, Taiwan

2013/08/18 Summer Institute 2013, Korea

Phys. Rev. D 87, 015025 (2013) (Collaboration with Abdesslam Arhrib and Otto Kong)

Lepton Flavor Violation and R Parity

Why lepton flavor violation (LFV):

- ► In the Standard Model
- ► In neutrino oscillation experiments
- ► The observation of lepton flavor violation as a hint to physics beyond the Standard Model

Among the possible LFV sources, R-parity violation (RPV) is the one which interests us.

Lepton Flavor Violation and R Parity

What is R parity:

- ► Keeps baryon and lepton number conservation
- Makes lightest supersymmetric particle (LSP) a possible dark matter candidate

Without R parity:

- ► A richer phenomenology
- ► A convenient approach to lepton flavor violation which gives neutrino masses and mixings
- ► Metastable dark matter is still possible. F. Takayama et al. (2000)

$$h^0 o \mu^\pm au^\mp$$

We investigate thoroughly LFV Higgs to $\mu^{\pm}\tau^{\mp}$ decay in supersymmetry (SUSY) without R parity:

- ► Full diagrammatic calculations up to one-loop level
- All the needed effective couplings and decay amplitudes are derived analytically.
- ► We diagonalize all the mass matrices numerically and deal directly with the mass eigenstates.

$$h^0 o \mu^\pm au^\mp$$

We investigate thoroughly LFV Higgs to $\mu^\pm \tau^\mp$ decay in supersymmetry (SUSY) without R parity:

- ► Full diagrammatic calculations up to one-loop level
- All the needed effective couplings and decay amplitudes are derived analytically.
- ► We diagonalize all the mass matrices numerically and deal directly with the mass eigenstates.

Why $h^0 o \mu^\pm au^\mp$:

- ► Especially interesting at the moment with Higgs being discovered
- ► Lack for a comprehensive consideration of R-parity violation

The key features of $h^0 \to e^{\pm} \mu^{\mp}$ and $h^0 \to e^{\pm} \tau^{\mp}$ are also discussed.

A Generic Supersymmetric Model without R Parity

Superpotential with minimal superfields spectrum:

$$\begin{split} W = & \epsilon_{ab} \left[\mu_{\alpha} \hat{H}_{u}^{a} \hat{L}_{\alpha}^{b} + h_{ik}^{u} \hat{Q}_{i}^{a} \hat{H}_{u}^{b} \hat{U}_{k}^{C} + \lambda_{\alpha j k}^{'} \hat{L}_{\alpha}^{a} \hat{Q}_{j}^{b} \hat{D}_{k}^{C} + \frac{1}{2} \lambda_{\alpha \beta k} \hat{L}_{\alpha}^{a} \hat{L}_{\beta}^{b} \hat{E}_{k}^{C} \right] \\ + & \frac{1}{2} \lambda_{ijk}^{"} \hat{U}_{i}^{C} \hat{D}_{j}^{C} \hat{D}_{k}^{C} \end{split}$$

- ▶ We have four \hat{L} superfields.
- ▶ We choose a flavor basis such that only \hat{L}_0 bears a nonzero vacuum expectation value (VEV) and thus can be identified as usual \hat{H}_d in the minimal supersymmetric standard model (MSSM).

Soft Supersymmetry Breaking Terms

The soft SUSY breaking terms V_{soft} :

$$\begin{split} &\epsilon_{ab} B_{\alpha} H_{u}^{a} \tilde{L}_{\alpha}^{b} + \epsilon_{ab} \left[A_{ij}^{U} \tilde{Q}_{i}^{a} H_{u}^{b} \tilde{U}_{j}^{\dagger} + A_{ij}^{D} H_{d}^{a} \tilde{Q}_{i}^{b} \tilde{D}_{j}^{\dagger} + A_{ij}^{E} H_{d}^{a} \tilde{L}_{i}^{b} \tilde{E}_{j}^{\dagger} \right] + \text{h.c.} \\ &+ \epsilon_{ab} \left[A_{ijk}^{\lambda'} \tilde{L}_{i}^{a} \tilde{Q}_{j}^{b} \tilde{D}_{k}^{\dagger} + \frac{1}{2} A_{ijk}^{\lambda} \tilde{L}_{i}^{a} \tilde{L}_{j}^{b} \tilde{E}_{k}^{\dagger} \right] + \frac{1}{2} A_{ijk}^{\lambda''} \tilde{U}_{i}^{\dagger} \tilde{D}_{j}^{\dagger} \tilde{D}_{k}^{\dagger} + \text{h.c.} \\ &+ \tilde{Q}^{\dagger} \tilde{m}_{Q}^{2} \tilde{Q} + \tilde{U}^{\dagger} \tilde{m}_{U}^{2} \tilde{U} + \tilde{D}^{\dagger} \tilde{m}_{D}^{2} \tilde{D} + \tilde{L}^{\dagger} \tilde{m}_{L}^{2} \tilde{L} + \tilde{E}^{\dagger} \tilde{m}_{E}^{2} \tilde{E} + \tilde{m}_{H_{u}}^{2} |H_{u}|^{2} \\ &+ \frac{M_{1}}{2} \tilde{B} \tilde{B} + \frac{M_{2}}{2} \tilde{W} \tilde{W} + \frac{M_{3}}{2} \tilde{g} \tilde{g} + \text{h.c.} \end{split}$$

▶ \tilde{m}_L^2 is given by a 4×4 matrix with zeroth components. $\tilde{m}_{L_{00}}^2$ corresponds to $\tilde{m}_{H_d}^2$ in MSSM while $\tilde{m}_{L_{0k}}^2$'s give new mass mixings.

Corrections to Higgs Boson Masses

Following corrections to Higgs Boson masses are considered:

- ► Tree-level contributions from the RPV terms
- ► The radiative corrections from third generation quarks and squarks

We implement full one-loop radiative corrections from third generation quarks and squarks to matrix elements which are most relevent to Higgs states. M. Carena et al. (2000)

Specifically, key two-loop corrections to elements directly related to light Higgs are also implemented. S. Heinemeyer *et al.* (1999)

Tree Level Feynman Diagrams

In the framework of SUSY without R parity, we can have LFV Higgs decays at tree level.

We show these tree diagrams by means of the mass insertion approximation:

One-Loop Feynman Diagrams (1)

One-Loop Feynman Diagrams (2)

One-Loop Feynman Diagrams (3)

Conditions and Assumptions

Adopted parameter space:

Free parameters	Range	
$ \mu_0 ,~M_2,~ A_u ,~ A_d $ and $\left A^\lambda ight $	$\leq 2500 \; \text{GeV}$	
A_e	zero, since its influence is negligible	
taneta	3 to 60	
$ ilde{m}_E^2 = ilde{m}_L^2$ (without zeroth component)	$\leq (2500 \text{ GeV})^2 \times \text{identity matrix}$	
$ ilde{m}_{L_{00}}^2$	Constrained only by mass eigenvalues below	
Mass eigenvalues output	Range	
Light Higgs mass	123 to 127 GeV	
Heavy Higgs/sneutrino masses	200 GeV to 3 TeV	
Charged Higgs/slepton masses	200 GeV to 3 TeV	

- ► The total decay width of light Higgs is the RPV decay rate of $h^0 \to \mu^{\pm} \tau^{\mp}$ plus MSSM one.
- $ightharpoonup M_2 = rac{1}{3.5} M_3 = 2 M_1; \; ilde{m}_Q^2 = ilde{m}_U^2 = ilde{m}_D^2 = (0.8 M_3 imes ext{identity matrix})^2$

Constraints on RPV Parameters

Bounds in whole analysis:

- lacktriangleq Indirect neutrino mass bound $\sum_i m_{
 u_i} \lesssim 1 \mathrm{eV}$ D. N. Spergel *et al.* (2003)
- ▶ Just in case, branching ratios with solid neutrino mass bounds, i.e. $m_{\nu_e} < 3 \mathrm{eV}$, $m_{\nu_\mu} < 190 \mathrm{keV}$ and $m_{\nu_\tau} < 18.2 \mathrm{MeV}$ are also listed.

Other constraints:

- ► Additional "1% of B₀" as upper bound of B_i by hand in the circumstance of extraordinary loose bounds
- ▶ LFV charged lepton decays (e.g., $\tau^- \to \mu^- e^+ e^-$, $\mu \to e \gamma$)
- ▶ Semileptonic decays (e.g., $D^+ o \bar{K}^0 I_i^+ \nu_i$)
- experimental values of CKM matrix elements

Contributions from $B_i \lambda$ and $B_i A^{\lambda}$ Combinations

All three panels: Branching ratios from $B_2 A_{232}^{\lambda}$ (upper-left) and $B_2 \lambda_{232}$ (lower ones) with $M_2=2500$ GeV, $\mu_0=1800$ GeV = $A_u=-A_d$ and $\tan\beta=60$. The Solid red line (m_{ν} bound) comes from demanding that the 22 element of the neutrino mass matrix < 1 eV.

Results

We pull together the most interesting RPV parameter combinations and corresponding branching ratios:

The most interesting RPV parameter combinations

RPV Parameter Combinations	With Neutrino Mass $\lesssim\!1$ eV Constraint	With Relaxed Neutrino Mass Bounds
$B_2 \mu_3$	1×10^{-15}	9×10^{-6}
$B_3 \mu_2$	$1 imes 10^{-13}$	$7 imes 10^{-4}$
$B_1 \lambda_{123}$	$1 imes 10^{-5}$	4×10^{-5}
$B_1 \lambda_{132}$	3×10^{-5}	$7 imes 10^{-5}$
$B_2 \lambda_{232}$	3×10^{-5}	6×10^{-2}
$B_3 \lambda_{233}$	3×10^{-5}	$3 imes 10^{-2}$
$B_2A_{232}^\lambda$	$5 \times 10^{-11(-5)}$	7×10^{-7}
$B_3 A_{233}^{\lambda 3}$	$5 \times 10^{-11(-5)}$	$1 imes 10^{-7}$

► The numbers in the parentheses indicate the branching ratios in the case of $A^{\lambda} = 2500$ TeV.

Conclusion

- Constraints from neutrino mass give stringent bounds for most RPV parameter combinations.
- ► Even with RPV parameters only, notable contributions to LFV Higgs decays are possible.
- ▶ $h^0 \to e^{\pm} \tau^{\mp}$ is expected to be able to give roughly the same order of branching ratio with that of $h^0 \to \mu^{\pm} \tau^{\mp}$.
- ▶ $h^0 \to e^\pm \mu^\mp$ is suppressed due to constraint from two-loop Barr-Zee diagrams. A. Goudelis *et al.* (2012); G. Blankenburg *et al.* (2012); R. Harnik *et al.* (2012)

The branching ratio can become even larger if we allow more free parameters or a larger parameter space.

Conclusion

Generally speaking, a heavy SUSY spectrum is preferred.

- An exception: in the extreme case that A^{λ} is larger than around hundreds of TeV
- ightharpoonup A smaller value of the Higgs mass parameter M_A is favored.

In a Higgs factory, the cross-section of a 125 GeV SM Higgs boson is roughly 200 fb near the threshold. With a luminosity of 500 fb $^{-1}$, we may have several raw events.

At a higher energy (e.g., 3 TeV) the cross-section is about 500 fb. With a luminosity of 1000 fb $^{-1}$, we may have several tens of raw events.

Thank you for your attention!