Searching for a flavor changing decay t → c h at the LHC

Masaya Kohda (National Taiwan Univ.)

Based on:

Kai-Feng Chen, Wei-Shu Hou, Chung Kao, and MK, arXiv:1304.8037

August 18, Summer Institute 2013 @ Jirisan National Park, Korea

Why $t \rightarrow ch$?

- top and Higgs are two most massive particles ever discovered
- it is of great interest to see a link between these two particles
- in SM, t → c h is induced at 1-loop and is highly suppressed due to GIM & CKM:

$$\mathcal{B}(t \to ch) \simeq 3 \times 10^{-15}$$

Eilam et al., PRD'91; Mele et al., PLB'98; Aguilar-Saavedra '04

- current experimental data is sensitive to 1% level (discussed later)
- so, t → c h is a good place to see New Physics effects
- this talk: general two Higgs doublet model (2HDM-III)

t-c-h coupling in 2HDM-III

$$\frac{\rho_{ct}\cos(\beta-\alpha)\bar{c}th + \text{H.c.}}{\text{extra Yukawa coupling}} \quad \text{mixing in CP-even Higgs sector} \\ \text{(following type-II convention)}$$

* forbidden in 2HDM with Natural Flavor Conservation (e.g., type-II 2HDM), hence, great impact if discovered [Glashow and Weinberg]

how large can this be?

A motivation for a large $\rho_{\rm ct}$: BaBar "anomaly" for B \rightarrow D $\tau \nu$ and B \rightarrow D $^{(*)}\tau \nu$

BaBar, PRL '12

lacksquare 3.4 σ (combo) deviation from SM

	R(D)	R(D*)
BABAR	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

Type-II 2HDM can not explain R(D) and R(D*) simultaneously

$$\tan \beta / m_{H^+} = 0.44 \pm 0.02$$
 for $R(D)$
 $\tan \beta / m_{H^+} = 0.75 \pm 0.04$ for $R(D^*)$

- → 2HDM-II is excluded with 99.8% C.L.!
- 2HDM-III can explain the "anomaly"

Explain BaBar anomaly by 2HDM-III

2HDM-III Yukawa interactions

notation follows Mahmoudi and Stal, PRD'10

- leptonic Yukawa ρ^{l} is diagonal
- **CP-conservation in Higgs** sector

 $\rho_{\rm ct}$ ~ 1 or larger is favored when $\cos(\beta - \alpha) \ge 0.1$

- nonzero $\cos(\beta \alpha)$ is required for nonzero t \rightarrow ch $\rho_{ct} \cos(\beta \alpha)\bar{c}th + \text{H.c.}$
- but, finite $cos(\beta-\alpha)$ tend to push ρ_{ct} nonperturbatively large
- lower charged Higgs mass is preferable in this sense

- nonzero $\cos(\beta \alpha)$ is required for nonzero t \rightarrow ch $\rho_{ct} \cos(\beta \alpha)\bar{c}th + \text{H.c.}$
- but, finite $\cos(\beta \alpha)$ tend to push ρ_{ct} nonperturbatively large
- lower charged Higgs mass is preferable in this sense

b \rightarrow s γ bound in 2HDM-III with ρ_{ct} = 1

Notation follows, Ciuchini et al., NPB (1998)

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} C_7 Q_7 + \dots \qquad Q_7 = \frac{e}{16\pi^2} m_b (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$$

$$\delta C_{7,8}(\mu_W) \simeq \frac{1}{3} \left(\rho_{tt} + \frac{V_{cs}^*}{V_{ts}^*} \rho_{ct} \right) \left(\rho_{tt}^* + \frac{V_{cb}}{V_{tb}} \rho_{ct}^* \right) \frac{F_{7,8}^{(1)}(y)}{2m_t^2/v^2} - \left(\rho_{tt} + \frac{V_{cs}^*}{V_{ts}^*} \rho_{ct} \right) \rho_{bb} \frac{F_{7,8}^{(2)}(y)}{2m_t m_b/v^2}$$

b \rightarrow s γ bound in 2HDM-III with $\rho_{\rm ct}$ = 1

Notation follows, Ciuchini et al., NPB (1998)

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} C_7 Q_7 + \dots \qquad Q_7 = \frac{e}{16\pi^2} m_b (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$$

$$\delta C_{7,8}(\mu_W) \simeq \frac{1}{3} \left(\rho_{tt} + \frac{V_{cs}^*}{V_{ts}^*} \rho_{ct} \right) \left(\rho_{tt}^* + \frac{V_{cb}}{V_{tb}} \rho_{ct}^* \right) \frac{F_{7,8}^{(1)}(y)}{2m_t^2/v^2} - \left(\rho_{tt} + \frac{V_{cs}^*}{V_{ts}^*} \rho_{ct} \right) \rho_{bb} \frac{F_{7,8}^{(2)}(y)}{2m_t m_b/v^2}$$

 ρ_{tt}

CKM enhanced

300 GeV H⁺ is allowed in contrast to type-II case (though fined-tuned region)

t -> c h search at the LHC

Search for t \rightarrow c h in top-anti-top events

tt(bar) production cross section is large

$$\sigma_{t\bar{t}}=220~{
m pb}~{
m [LHC8]}~{
m Czakon}$$
 and Mitov, JHEP (2013)

ullet $pp
ightarrow t ar{t}
ightarrow bWch
ightarrow {ullet}$ h + 4jets / h + 2jets + l + MET

$$\sigma(pp \to t\bar{t} \to bWch) \sim 9 \text{ pb} \times \left[\frac{\mathcal{B}(t \to ch)}{0.02}\right]$$
 [LHC8]

vs.
$$\sigma_{gg \to h} \sim 19 \; \mathrm{pb}$$
 [LHC8]

 existing LHC data (2011 + 2012) would be sensitive to B(t→ch) ~ O(1)%

Any extra jets in $h \rightarrow ZZ^* \rightarrow 4l$ events?

- \bullet M₄₁ = [121.5 –130.5] GeV
- sum of 4e, 4μ , $2e2\mu$ channels

- No evidence for extra jets
 → bound on B(t → ch)
- 95%CL limit obtained by simple use of standard CLs method:

$$\sigma(pp \to t\bar{t} \to bWch) < 6.5 \text{ pb}$$

$$\Rightarrow \mathcal{B}(t \to ch) < 1.5\%$$

Actual experimental studies should do better

Use of other Higgs decay modes

- h \rightarrow WW* & $\tau\tau$ Craig et al., PRD'12
 - > study of multi-lepton final states using CMS 7TeV data:
 B(t→ch) < 2.7% ... can be updated w/ latest data
- h → bb
 C. Kao, H.-Y. Cheng, W.-S. Hou and J. Sayre, PLB'12
 - ightharpoonup Signal: $pp o t ar t o bWch o bbb + c + \ell
 u$
 - ➤ With full LHC8 data, 5σ discovery is possible for B(t→ch) > 0.3% [if B(h→bb) is SM-like]
- $\bullet \ \mathsf{h} \to \gamma \gamma$
 - ➤ recently, ATLAS reported first result for t→ch (next slides)
 ATLAS-CONF-2013-081

ATLAS results for t \rightarrow c h($\rightarrow \gamma \gamma$)

Hadronic channel (7+8 TeV combined)

$$N_{obs}$$
 (full range) = 50
 N^{SM}_{H} = 0.275 ± 0.100 (theory+lumi)

$$N_{FCNC}[B(t\rightarrow cH)=1\%] = (1.58 \pm 0.12)_{(7TeV)} + (9.30^{+0.65}_{-0.72})_{(8TeV)}$$

Lepton channel (8 TeV)

$$N_{obs}$$
 (full range) = 1
 N^{5M}_{H} = 0.053 ± 0.008 (theory+lumi)

$$N_{FCNC}[B(t\rightarrow cH)=1\%] = (2.91^{+0.24}_{-0.27})$$

N (had+lept) =
$$3.7^{+4.4}_{-3.7}$$
 events

ATLAS results for t \rightarrow c h($\rightarrow \gamma \gamma$)

Limits

 $B(t \rightarrow cH) < 0.83\% (0.53\% expected) @ 95 % CL$

corresponding to a limit on the tcH coupling of : $\lambda_{tcH} \sim 1.91 \text{ B}^{0.5} < 0.17 \text{ (0.14 expected)}$

G.Calderini Higgshunting 2013

25

Discussions

 $\rho_{ct}, \ \rho_{tt}, \ \rho_{cc}$

- Properties of the light Higgs h can be modified in 2HDM-III
- \bullet Need simultaneous study of t \rightarrow c h and Higgs properties (not done in our study)
- Light Higgs properties when $\rho_{\rm ct}$ ~ 1 with small finite $\cos(\beta \alpha)$

	$\mathcal{B}^{ ext{SM}}$	$\Gamma^{ m SM}$ [N	leV] Γ	Comment
WW^*	21.5%	0.98	hard to change	$\sin(\beta - \alpha) \simeq 1$
ZZ^*	2.7%	0.12	hard to change	$\sin(\beta - \alpha) \simeq 1$
$\gamma\gamma$	0.24%	0.011	hard to change	W-loop dom.
bb	59.4%	2.70	hard to change	$b \to s \gamma$
au au	5.7%	0.26	within fac. 2	direct
cc	2.6%	0.12	up to $\sim \Gamma_{b\bar{b}}$	not measured
1				$(\rho_{cc} \lesssim 0.2) \leftarrow$
gg	7.7%	0.35	up to fac. 2	$ \rho_{tt} \sim 1 $

Summary

- It is of great interest to search for the link between the top quark (t) and the Higgs boson (h)
- Large t-c-h coupling has great impact on flavor physics
- Existing LHC data have sensitivity to B(t → ch) at 1% level or below by various methods
- Actual experimental studies may do better
 ← recent ATLAS result (h→ $\gamma\gamma$): B(t→ch) < 0.83% (95%CL)
- If t → ch is discovered with present data, it would suggest the existence of an extended Higgs sector beyond the usual
 2HDM-II implied by MSSM, so it has a great impact!