

Loop Suppression of Dirac Neutrino Mass in the Neutrinophilic Two Higgs Doublet Model

Toshinori MATSUI [D1] University of Toyama

Based on arXiv: 1305.4521, in collaboration with

Shinya Kanemura (University of Toyama), Hiroaki Sugiyama (Kyoto Sangyo University)

In this talk,

- We consider the neutrinophilic two Higgs doublet model, where the second doublet has a small VEV.
- We discuss a natural scenario in which the VEV is generated by the one loop diagram.
- In addition, this scenario contains a DM candidate.
- We also discuss a possible signature at the LHC in this scenario.

How do neutrino masses generate?

The standard model is successful.

Neutrino oscillation suggests that neutrinos have tiny masses.

 $m_{
u} \simeq 0.1 {
m eV}
ightarrow {
m There}$ are large mass hierarchy.

Type of neutrino masses:

Dirac

or

Majorana

-For the case of Dirac neutrino,

$$v \simeq \mathcal{O}(100 \text{GeV})$$
 $v \simeq \frac{m_{\nu}}{v} \simeq 10^{-12}$

Small Yukawa!!

 \Rightarrow It is unnatural that m, are generated by the SM VEV.

Neutrinophilic Two Higgs Doublet Model (vTHDM)

S.M.Davidson & H.E.Logan, Phys. Rev. D 80 (2009) 095008

 The origin of m, are explained by the neutrinophilic doublet Φ_{v} .

VTHDM

Φ Φ_{ν} ν_{iR} $SU(2)_L$ 2 1 2 $\frac{1}{2}$ $U(1)_{Y}$ $\mathbf{0}$ Global $U(1)_X$ 0

$$V^{(\nu \text{THDM})} = -\mu_{\Phi 1}^2 \Phi^{\dagger} \Phi + \mu_{\Phi 2}^2 \Phi_{\nu}^{\dagger} \Phi_{\nu} - \left(\mu_{\Phi 12}^2 \Phi_{\nu}^{\dagger} \Phi + \text{h.c.} \right) \frac{\text{Global U}(1)_X \parallel 0 \parallel 1}{1} + \lambda_{\Phi 1} (\Phi^{\dagger} \Phi)^2 + \lambda_{\Phi 2} (\Phi_{\nu}^{\dagger} \Phi_{\nu})^2 + \lambda_{\Phi 12} (\Phi^{\dagger} \Phi) (\Phi_{\nu}^{\dagger} \Phi_{\nu}) + \lambda_{\Phi 12}' (\Phi^{\dagger} \Phi_{\nu}) (\Phi_{\nu}^{\dagger} \Phi)$$

• U(1)_x is softly broken by $\mu_{\Phi 12}^2 \Phi_{\nu}^{\dagger} \Phi$.

$$\langle \Phi_{\nu} \rangle \simeq \frac{2v \,\mu_{\Phi 12}^2}{2\mu_{\Phi 2}^2 + (\lambda_{\Phi 12} + \lambda_{\Phi 12}')v^2} \longrightarrow m_{\nu} \simeq y_{\nu} \,\langle \Phi_{\nu} \rangle$$

$$y_{
u} \simeq \mathcal{O}(1)$$
 $\frac{v_{
u}}{v} \simeq \left(\frac{\mu_{\Phi 12}}{v}\right)^2 \simeq \frac{m_{
u}}{y_{
u}v} \simeq 10^{-12}$ Small VEV!!

 $v_{\nu} \equiv \langle \Phi_{\nu} \rangle$

 \Rightarrow But, v_{ν} requires the fine-tuning of the parameter $\mu_{\Phi_{12}}^2$.

August 19, 2013 Toshinori MATSUI SI2013

Our Model: Loop suppressed vTHDM

	v_{iR}	$\Phi_{\nu} = \begin{pmatrix} \phi_{\nu}^{+} \\ \phi_{\nu}^{0} \end{pmatrix}$	s_1^0	$\eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix}$	s_2^0
SU(2) _L	1	<u>2</u>	1	2	1
U(1) _Y	0	1/2	0	1/2	0
Global U(1) _X	3	3	1	3/2	1/2

No VEV
$$v_s \equiv \langle s_1^0
angle$$

$$V = -\mu_{s1}^{2} |s_{1}^{0}|^{2} + \mu_{s2}^{2} |s_{2}^{0}|^{2} - \mu_{\Phi 1}^{2} \Phi^{\dagger} \Phi + \mu_{\Phi 2}^{2} \Phi_{\nu}^{\dagger} \Phi_{\nu} + \mu_{\eta}^{2} \eta^{\dagger} \eta$$

$$- \left(\mu s_{1}^{0*} (s_{2}^{0})^{2} + \text{h.c.} \right) + \left(\lambda_{s\Phi 1\eta} s_{1}^{0*} (s_{2}^{0})^{*} \Phi^{\dagger} \eta + \text{h.c.} \right) + \left(\lambda_{s\Phi 2\eta} s_{1}^{0} s_{2}^{0} \Phi_{\nu}^{\dagger} \eta + \text{h.c.} \right) + \cdots$$

• The soft-term $\mu_{\Phi_{12}}^2 \Phi_{\nu}^{\dagger} \Phi$ is forbidden.

$$v_{\nu}|_{\text{tree}} = 0$$

- But, $\frac{1}{16\pi^2\Lambda^2}(s_1^0)^3\Phi_{\nu}^{\dagger}\Phi$ is allowed at the loop level.
- \Rightarrow By the spontaneous breaking of U(1)_x, we can get the suppressed VEV of Φ_{v} :

August 19, 2013 5 Toshinori MATSUI SI2013

Dark Matter

- Z_2 -sym. remains unbroken after $U(1)_X$ breaking.
- $(\mu_{\Phi 12}^2)_{\rm eff} [\Phi_{\nu}^{\dagger} \Phi]$ is generated by the loop effect of Z₂-odd particles ($\eta \& s_2^0$) whose lightest one is a DM candidate.

 \Rightarrow We can explain m_v without large fine-tuning by this relation.

$$\left(\frac{(\mu_{\Phi 12})_{\text{eff}}}{v}\right)^2 \simeq \frac{m_{\nu}}{y_{\nu}v} \longrightarrow \frac{\frac{\mu \lambda_{s\Phi 1\eta} \lambda_{s\Phi 2\eta} y_{\nu} v_s^3}{m_{\eta}^2 - m_{s2}^2} \simeq (10^{-3} \text{GeV})^2$$

Collider Phenomenology

Allowed parameter set (the singlet DM case):

$$(y_{\nu})_{\ell i} \sim 10^{-4}$$
, $\lambda_{s\Phi 1\eta} = \lambda_{s\Phi 2\eta} = 10^{-2}$, $\mu = 1 \,\text{GeV}$, $v_s = 300 \,\text{GeV}$, $m_{\phi_{\nu}} = m_{\phi_{\nu}^{\pm}} = 300 \,\text{GeV}$, $m_{\eta} = 230 \,\text{GeV}$, $m_{s_2} = 65 \,\text{GeV}$

satisfying p parameter, lepton flavor violating processes, the relic abundance of DM and direct searches for DM.

⇒We expect that the background can be reduced!

Conclusions

We investigated the model of vTHDM.

LOOP SUPPRESSION

- To explain the smallness of the VEV of Φ, , we introduced with a new mechanism that the VEV is suppressed by the loop diagram.
- Then, there was a DM candidate in our model.
- We suggested a possible signature at the LHC in this scenario.

Back Up

Dark Matter

Higgs invisible decay is not allowed.

vTHDM

Constraint from DM direct search for inert doublet model.

M.Gustafsson et al, Phys. Rev. D 86 (2012) 075019

 \Rightarrow We choose $m_{DM} = 65$ GeV.

Mass spectrum

2. To test the our characteristic process: $\phi_{
u} \to s_2 \eta$ we forbid the process: $\phi_{
u} \to W^\pm \phi_{
u}^\pm \qquad m_{\phi_{
u}} = m_{\phi}$

NG boson Interaction to Matter

Y.Chikashige, R.N.Mohapatra and R.D.Peccei, Phys. Lett. B 98 (1981) 265

$$\frac{m_{\nu}}{v_s} \simeq 10^{-12}$$

$$g_{ffJ} \sim \frac{G_F m_{\nu}^2 m_f}{16\pi^2 v_s} \sim \left(\frac{m_{\nu}}{0.1 \,\text{eV}}\right)^2 \left(\frac{m_f}{1 \,\text{MeV}}\right) \left(\frac{100 \,\text{GeV}}{v_s}\right) \times 10^{-32}$$

⇒The coupling of this process is very small.

Phenomenology of original vTHDM

S.M.Davidson & H.E.Logan, Phys. Rev. D 82 (2010) 115031

Because $\phi_{\nu} \to \nu \bar{\nu}$ of vTHDM process is missing, the possible signature of vTHDM is pp $\to \varphi_{\nu}^+ \varphi_{\nu}^-$

Process	Cross section	
$pp \to \phi_{\nu}^{+} \phi_{\nu}^{-} (M_{\phi^{+}} = 100 \text{ GeV})$	295 fb	
$pp \to \phi_{\nu}^{+} \phi_{\nu}^{-} (M_{\phi_{\nu}^{+}} = 100 \text{ GeV})$ $pp \to \phi_{\nu}^{+} \phi_{\nu}^{-} (M_{\phi_{\nu}^{+}} = 300 \text{ GeV})$	5.32 fb	
$pp \to W^+W^-$	127.8 pb	
pp o ZZ	17.2 pb	
$pp o t ar{t}$	833 pb	

We can distinguish this model to test $\phi_{
u}
ightharpoonup s_2 \eta$ of our model.

1.Prediction of vTHDM $\phi_{\nu}^{+} \rightarrow \overline{\ell_{L}} \nu_{R}$

S.M.Davidson & H.E.Logan, Phys. Rev. D 80 (2009) 095008

⇒When we measure

$$\frac{\mathrm{BR_e}}{\mathrm{BR}_{\mu}}$$
,

we can understand neutrino mass hierarchy.

2. The partial decay width

• The partial decay width of our model: $\phi_{\nu} \rightarrow s_2 \eta$, in comparison with original vTHDM.

$$\Gamma(\phi_{\nu} \to \nu \bar{\nu}) = \frac{\text{tr}(y_{\nu}^{\dagger} y_{\nu}) m_{\phi_{\nu}}}{16\pi} \simeq 60 \text{ eV},$$

$$\Gamma(\phi_{\nu} \to s_{2} \eta) = \frac{\lambda_{s\Phi 2\eta}^{2} v_{s}^{2}}{64\pi m_{\phi_{\nu}}} \sqrt{1 - \frac{(m_{s_{2}} + m_{\eta})^{2}}{m_{\phi_{\nu}}^{2}}} \sqrt{1 - \frac{(m_{s_{2}} - m_{\eta})^{2}}{m_{\phi_{\nu}}^{2}}} \simeq \underline{20 \text{ keV}}$$

$$m_{\phi_{\nu}} = 300 \,\text{GeV}, \quad m_{\eta} = 230 \,\text{GeV}, \quad m_{s_2} = 65 \,\text{GeV}$$

The process of our model is dominant in comparison with original vTHDM.