Glauber gluons in the DrellYan Process

Chun-peng Chang

National Tsing Hua University / Academia Sinica Collaborator: Hsiang-nan Li (NTHU, AS) arXiV: 1305.4694
Summer Institute 2013, Jirisan, Korea 2013/08/19

Outlines

- Introduction
- Lam-Tung relation
- Boer-Mulders function and the QCD vacuum
- Glauber gluon effect
- πp v.s. $p p$ v.s. $p \bar{p}$

Introduction

- The Lam-Tung relation for the Drell-Yan process was derived kinematically over 20 years ago.
- Concerning the angular distribution among quarks and leptons.
- Confirmed in the Proton-Proton case
- Not for the Pion-Proton case.

Lam-Tung relation

- Drell-Yan Process, with some real emission of gluons
- The lepton pair carries transverse momentum
- The angle between the quarks and the leptons

Drell-Yan decay angular distributions

Θ and Φ are the decay polar and azimuthal angles of the μ^{+}in the dilepton rest-frame Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:
$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
λ can differ from 1 , but should satisfy $1-\lambda=2 v$ (Lam-Tung)

Decay angular distributions in pion-induced Drell-Yan

(a)
$194 \mathrm{GeV} / \mathrm{c}$

(b)
$286 \mathrm{GeV} / \mathrm{c}$

(c)

Fig 3a-e. Parameters λ_{4}, μ and v as a function of P_{F} in the CS frame. a $140 \mathrm{GeV} / \mathrm{c} ; \mathrm{b} 194 \mathrm{GeV} / \mathrm{c} ;$ e $286 \mathrm{GeV} / \mathrm{c}$. The error bars correspond to the statistical uncertainties only. The horizontal bars give the size of each interval. The dashed curves are the predictions of perturbative QCD [3]

$v \neq 0$ and v increases with p_{T}

Boer-Mulders function

Boer (PRD 60, 014012 (I999)):

Hadronic Effect

- h_{1}^{\perp} represents a correlation between quark's k_{T} and hadron mass transverse spin in an unpolarized hadron
- h_{1}^{\perp} can lead to an azimuthal dependence with $\frac{v}{2} \propto h_{1}^{\perp}(N) \bar{h}_{1}^{\perp}(\pi)$

$$
\begin{aligned}
& h_{1}^{\perp}\left(x, k_{T}^{2}\right)=C_{H} \frac{\alpha_{T}}{\pi} \frac{M_{C} M_{H}}{k_{T}^{2}+M_{C}^{2}} e^{-\alpha_{T} k_{T}^{2}} f_{1}(x), \\
& \nu=16 \kappa_{1} \frac{p_{T}^{2} M_{C}^{2}}{\left(p_{T}^{2}+4 M_{C}^{2}\right)^{2}}, \quad \kappa_{1}=C_{H_{1}} C_{H_{2}} / 2 \\
& \kappa=\frac{v}{2} \rightarrow 0 \text { for large }\left|k_{T}\right|
\end{aligned}
$$

Consistency of factorization in term of TMDs

E866 (PRL 99 (2007) 08230I):

 Azimuthal cos2Ф Distribution of DY events in pd

$$
\begin{aligned}
& \left.\mathrm{v}\left(\pi-\mathrm{W} \rightarrow \mu^{+} \mu^{-} \mathrm{X}\right) \sim\left[\text { valence } \mathrm{h}_{1}{ }^{(}(\pi)\right]\right]^{*}\left[\text { valence } \mathrm{h}_{1}{ }^{\perp}(\mathrm{p})\right] \\
& \mathrm{v}(\mathrm{pd} \rightarrow \mu+\mu-\mathrm{K}) \sim\left[\text { valence } \mathrm{h}_{1}{ }^{(}(\mathrm{p})\right]^{*}\left[\text { sea } \mathrm{h}_{1}{ }^{(}(\mathrm{p})\right]
\end{aligned}
$$

Sea-quark BM functions are much smaller than valence quarks

Reconciliation

- The leading Fock state of $q \bar{q}$
- The subleading Fock state of $q \bar{q} g$ forms a huge soft cloud in the pion
- How about the soft cloud?

Gluons Emitted from the Soft cloud

These 3 diagrams contribute a delta function $\delta\left(l^{+}\right)$

Gluons Emitted from the Soft cloud

Eikonalization

$$
p_{1} \quad p_{1}-k_{1}+l
$$

Assume kI_{I} is in the plus direction and k_{2} is in the minus direction

$$
\begin{aligned}
\frac{2 k_{2}}{\left(k_{2}+l\right)^{2}+i \epsilon} & =\frac{2 k_{2}}{k_{2}^{2}+2 k_{2} \cdot l+l^{2}+i \epsilon} \approx \frac{2 k_{2}^{-}}{2 k_{2}^{-} l^{+}+i \epsilon} \\
& \approx \frac{1}{l^{+}+i \epsilon}=P V \frac{1}{l^{+}}-i \pi \delta\left(l^{+}\right) \\
\frac{2 k_{4}}{\left(k_{4}-l\right)^{2}+i \epsilon} & \approx \frac{1}{-l^{+}-i \epsilon}=-P V \frac{1}{l^{+}}-i \pi \delta\left(l^{+}\right)
\end{aligned}
$$

Glauber region

- The delta function leads to the Glauber gluon, i.e., additional infrared divergence.
- Glauber region: $l^{+}=0$
- Glauber gluon is virtual
- Ordinary soft gluon can be real or virtual

Glauber gluons

This Glauber gluon gives a factor $\cos S \quad S \sim \int \frac{1}{l_{T}{ }^{2}} d l_{T}{ }^{2}$ if we consider all orders of emitting gluons of pion

Glauber phase

$e^{i S}$
$e^{-i S}$
1

Angular coefficients after

assignments of $e^{i S}$

$$
\begin{aligned}
& \hat{\sigma}_{0}=\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\left(1+\frac{1}{2} s_{1}^{2}\right)+\left(c_{e}-1\right) \\
& \times\left\{2\left[\frac{E_{1} E_{2}}{k^{2}} c_{1}^{2}+\frac{k}{E_{1}}+\frac{k}{E_{2}}-\frac{1}{2}\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)-2\right]\right. \\
& \left.-\left[\frac{E_{1} E_{2}}{k^{2}} c_{1}^{2}-\frac{1}{2}\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\right] s_{1}^{2}\right\}, \\
& \hat{\sigma}_{1}=\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\left(c_{1}^{2}-\frac{1}{2} s_{1}^{2}\right)+\left(c_{e}-1\right) \\
& \times\left\{\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}-2\right) c_{1}^{2}\right. \\
& \left.+\left[\frac{E_{1} E_{2}}{k^{2}} c_{1}^{2}-\frac{1}{2}\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\right] s_{1}^{2}\right\} \\
& c_{e}=\cos S \\
& \text { Ei, E2:hadron energy } \\
& \mathrm{k} \text { : lepton energy } \\
& \hat{\sigma}_{2}=\left(\frac{E_{1}}{E_{2}}-\frac{E_{2}}{E_{1}}\right) c_{1} s_{1}+\left(c_{e}-1\right) \\
& \times\left(\frac{E_{2}-E_{1}}{k}+\frac{E_{1}}{E_{2}}-\frac{E_{2}}{E_{1}}\right) c_{1} s_{1} \quad \lambda \sim \widehat{\sigma}_{1} / \widehat{\sigma}_{0} \quad \mu \sim \widehat{\sigma}_{2} / \widehat{\sigma}_{0} \quad v \sim \widehat{\sigma}_{3} / \widehat{\sigma}_{0} \\
& \hat{\sigma}_{3}=\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right) s_{1}^{2}-\left(c_{e}-1\right) \\
& \times 2\left[\frac{E_{1} E_{2}}{k^{2}} c_{1}^{2}-\frac{1}{2}\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\right] s_{1}^{2},
\end{aligned}
$$

Numerical Results

$$
\begin{aligned}
& \sqrt{S}=194 \mathrm{GeV} \\
& q_{T}=2 \mathrm{GeV}, \quad Q=8 \mathrm{GeV} \\
& S e=1.15, \quad \lambda \sim 0.9, \quad v \sim 0.2 \\
& 1-\lambda-2 v \sim-0.3
\end{aligned}
$$

coefficients vs q_T

Decay angular distributions in pion-induced Drell-Yan

(a)
$194 \mathrm{GeV} / \mathrm{c}$

(b)
$286 \mathrm{GeV} / \mathrm{c}$

(c)

Fig 3a-e. Parameters λ_{4}, μ and v as a function of P_{F} in the CS frame. a $140 \mathrm{GeV} / \mathrm{c} ; \mathrm{b} 194 \mathrm{GeV} / \mathrm{c} ;$ e $286 \mathrm{GeV} / \mathrm{c}$. The error bars correspond to the statistical uncertainties only. The horizontal bars give the size of each interval. The dashed curves are the predictions of perturbative QCD [3]

$v \neq 0$ and v increases with p_{T}

Speculation

- Lam-Tung relation holds at $p_{T}=0$, in which the configuration contains only two partons (no real gluon emission)
- Lam-Tung relation breaks at $p_{T}>0$, in which the configuration contains at least 3 partons
- Violation of L-T relation caused by Glauber gluon?
- Glauber effect important only in pion due to the relatively large soft cloud?

How to verify?

- Using $p \bar{p}$, since the \bar{q} is a valence one.
- In Boer's prediction (VV>VS), LT should be broken.
- We can use this exp. to discriminate the two proposals (BM effect or Soft cloud nature).

Conclusions

- Glauber gluons appear in k_{T} factorization for complicated QCD processes.
- The Glauber gluons in the pion may break the Lam-Tung relation, which was still not solved at present.
- Proposed the exp. of $p \bar{p}$ collision to JPARC, to discriminate the different resolutions.
- Try to use the same method to study h to bbar jets

Thank you for holding till the last second. Enjoy the Banquet!

Lightcone Coordinate

$$
\begin{aligned}
k^{+} & =\frac{1}{\sqrt{2}}\left(k^{0}+k^{3}\right) \\
k^{-} & =\frac{1}{\sqrt{2}}\left(k^{0}-k^{3}\right) \\
\mathbf{k}_{\mathbf{T}} & =\left(k^{1}, k^{2}\right) \\
k^{2} & =2 k^{+} k^{-}-\left|\mathbf{k}_{\mathbf{T}}\right|^{2} \\
k \cdot l & =k^{+} l^{-}+k^{-} l^{+}-\mathbf{k}_{\mathbf{T}} \cdot \mathbf{l}_{\mathbf{T}}
\end{aligned}
$$

Glauber Divergence

$$
H_{1}\left(p_{1}\right)+H_{2}\left(p_{2}\right) \rightarrow H_{3}\left(p_{3}\right)+H_{4}\left(p_{4}\right)+X
$$

$$
E_{3} E_{4} \frac{d \sigma}{d^{3} \mathbf{p}_{3} d^{3} \mathbf{p}_{4}}=\sum \int d \sigma_{i+j \rightarrow k+l} f_{i / 1} f_{j / 2} d_{3 / k} d_{4 / l}
$$

- The problem is ...
- Soft gluons from parton I
- Coupling to parton 2
- Factorization breakdown?

$H_{1}+H_{2} \rightarrow H_{3}+H_{4}+X$

$$
\begin{aligned}
|\mathcal{M}|^{2} & =\left|\mathcal{M}^{(0)}+\mathcal{M}^{(1)}+\cdots\right|^{2} \\
& =\left|\mathcal{M}^{(0)}\right|^{2}+2 \operatorname{Re}\left[\mathcal{M}^{*(0)} \mathcal{M}^{(1)}\right]+\cdots
\end{aligned}
$$

Proton and Pion

- Proton - proton $=>$ OK

E866 Collab., Lingyan Zhu et al., PRL 99 (2007) 082301; PRL 102 (2009) 182001

27

Pion

- Massless behavior as a Goldstone boson in the exact chiral symmetry $m_{u, d}=0$
- Effective potential between the 2 quarks is linear for large distances. $\Rightarrow>$ Massive
- Pion is unique
- Resolve strange behavior for Pion-Proton Process?

Glauber gluon?

- Glauber gluon breaks the universality of PDF of hadron I , and kT factorization
- Glauber gluon exists if three or more hadrons are involved
- Glauber gluon does not exist if only one or two hadrons are involved. No delta function

CDF (PRL I06, 24I80I (20II)):

Angular Distribution of DY events at Z pole in p-pbar

Phase between diagrams

Reconciliation

- The leading Fock state of $q \bar{q}$ is tight in the pion to reduce the mass
- The subleading Fock state of $q \bar{q} g$ forms a huge soft cloud in the pion to fit its role of Nambu-Goldstone boson

Inserting the phase alpha

$$
\begin{aligned}
& \text { const }\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\left(1+\frac{1}{2} s_{1}^{2}\right)+(1-\cos \alpha)\left[2\left(-\frac{E_{1}}{E_{2}}-\frac{E_{2}}{E_{1}}+\frac{k}{E_{1}}+\frac{k}{E_{2}}+\frac{E_{1}}{k}+\frac{E_{2}}{k}-3\right)-s_{1}^{2} \frac{E_{1}+E_{2}-k}{k}\right] \\
& \lambda \begin{array}{c}
\cos ^{2} \theta\left\{\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\left(c_{1}^{2}-\frac{1}{2} s_{1}^{2}\right)+(1-\cos \alpha)\left(-2 c_{1}^{2}+\frac{E_{1}+E_{2}-k}{k} s_{1}^{2}\right)\right\} \\
\nu \\
\nu-\lambda-2 \nu=\frac{\sin 2 \theta\left\{\left(\frac{E_{1}}{E_{2}}-\frac{E_{2}}{E_{1}}\right) c_{1} s_{1}+(1-\cos \alpha) \frac{E_{2}-E_{1}}{k} c_{1} s_{1}\right\}}{\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right)\left(1+\frac{1}{2} s_{1}^{2}\right)+(1-\cos \alpha)\left(\frac{E_{1} E_{2}}{2 k^{2}} s_{1}^{2}-1\right) \cos \left(2 \theta_{1}\right)} \\
\left.1-\frac{\left(1-\frac{E_{2}}{2} \sin ^{2} \theta \cos 2 \phi\left\{\left(\frac{E_{1}}{E_{2}}+\frac{E_{2}}{E_{1}}\right) s_{1}^{2}+(1-\cos \alpha)(-2) \frac{E_{1}+E_{2}-k}{k} s_{1}^{2}\right\}\right.}{2 k^{2}} s_{1}^{2}+\frac{E_{1} E_{2}}{k^{2}} \sin ^{2}\left(2 \theta_{1}\right)\right]
\end{array} \\
& \sin \theta_{1} \sim \frac{p_{T}}{Q}
\end{aligned}
$$

Boer

$$
\rho^{(q, \bar{q})}=\frac{1}{4}\{\mathbf{1} \otimes \mathbf{1}\}
$$

transversely polarized photon, structure W_{T} only

Miniworkshop on Dihadron Fragmentation Functions (DiFF), Pavia, Sept 7, 2011

A simple geometric derivation of the generalized Lam-Tung relation (a la Oleg Teryaev)
$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
In the γ^{*} rest frame:
\hat{z} signifies the Collins-Soper frame \hat{z}_{0} is along the collinear $q-\bar{q}$ axis Leptons are emitted with uniform azimuthal distribution, and with θ_{0} dependence:

$$
\begin{aligned}
d \sigma & \sim 1+\lambda_{0} \cos ^{2} \theta_{0} \\
\left(\lambda_{0}\right. & =1 \text { for spin- } 1 / 2 \text { quark } \\
\lambda_{0} & =-1 \text { for spin- } 0 \text { quark })
\end{aligned}
$$

$\cos \theta_{0}=\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \phi$

$$
\begin{aligned}
d \sigma & \sim 1+\lambda_{0}\left(\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \phi\right)^{2} \\
& =\left[1+\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right]+\cos ^{2} \theta\left[\lambda_{0} \cos ^{2} \theta_{1}-\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right] \\
& +\sin 2 \theta \cos \phi\left[\left(\lambda_{0} / 2\right) \sin 2 \theta_{1}\right]+\sin ^{2} \theta \cos 2 \phi\left[\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right]
\end{aligned}
$$

A simple geometric derivation of the generalized Lam-Tung relation (a la Oleg Teryaev)

$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$

lepton plane (cm)

Therefore, we have

$$
\begin{aligned}
& \lambda=\lambda_{0} \frac{2-3 \sin ^{2} \theta_{1}}{2+\lambda_{0} \sin ^{2} \theta_{1}} \\
& \mu=\lambda_{0} \frac{\sin 2 \theta_{1}}{2+\lambda_{0} \sin ^{2} \theta_{1}} \\
& \nu=\lambda_{0} \frac{2 \sin ^{2} \theta_{1}}{2+\lambda_{0} \sin ^{2} \theta_{1}}
\end{aligned}
$$

and
$\lambda_{0}=\frac{\lambda+\frac{3}{2} \nu}{1-\frac{1}{2} \nu}$ (Generalized Lam-Tung relation)
If $\lambda_{0}=1$, we have $2 \nu=1-\lambda$ (Lam-Tung relation)
If $\lambda_{0}=-1$ (spin-0 quark), we have $-v=1+\lambda$

$$
\begin{aligned}
d \sigma & \sim 1+\lambda_{0}\left(\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \phi\right)^{2} \\
& =\left[1+\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right]+\cos ^{2} \theta\left[\lambda_{0} \cos ^{2} \theta_{1}-\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right] \\
& +\sin 2 \theta \cos \phi\left[\left(\lambda_{0} / 2\right) \sin 2 \theta_{1}\right]+\sin ^{2} \theta \cos 2 \phi\left[\left(\lambda_{0} / 2\right) \sin ^{2} \theta_{1}\right]
\end{aligned}
$$

Numerical Results

CDF

Ao and A_{2} are functions of lambda and nu When $\mathrm{Ao}_{0}=\mathrm{A}_{2}$, The LT relation holds

Angular asymmetry requires

 helicity flip- Asymmetry $\cos 2 \phi$ comes from an interference between +1 and -I photon helicities

Explanation as a QCD vaccum

The QCD vacuum can induce a spin correlation between an annihilating $q \bar{q}$

Chromo-magnetic Sokolov-Ternov effect: spin-flip gluon synchrotron emission leading to a correlated polarization of q and qbar.

The spin density matrix becomes:

$$
\rho^{(q, \bar{q})}=\frac{1}{4}\left\{\mathbf{1} \otimes \mathbf{1}+F_{j} \boldsymbol{\sigma}_{j} \otimes \mathbf{1}+G_{j} \mathbf{1} \otimes \boldsymbol{\sigma}_{j}+H_{i j} \boldsymbol{\sigma}_{i} \otimes \boldsymbol{\sigma}_{j}\right\}
$$

Lam-Tung relation could be violated

$$
1-\lambda-2 \nu=-4 \kappa=-4 \frac{H_{22}-H_{11}}{1+H_{33}}
$$

