

Seoul National University
On behalf of ATLAS & CMS

Institute 2013, Aug 17-23 2013

LHC Program

Measurements

- . Jets (~1-100μb)
- . W, Z (~10nb)
- . Top (~100pb)

Discovery

Higgs (~10pb)

Searches

- . Exotics
- . SUSY

Measurements

Jets at the highest scales

Highest transverse momentum jetsat the TeV scale

arXiv:1009.5908 (EPJC),

arXiv:1112.6297 (PRD)

arXiv:1106.0208 (PRL)

Running of the strong coupling

Leptons: Z, ZZ

CMS PAS SMP-12-025

Top Productions

- Use multivariable techniques and b-jet identification
- > 4% precision in dilepton channel

Top Mass

Fundamental parameter of the SM physics (+beyond)

Impressive precision: LHC (0.6%), Tevatron (0.5%); need to worry about what mass they measured

Differential Measurements

m_t - $< m_t > as pt(top)$

SM processes understood?

> ATLAS: Yes!!!

CMS: Yes!!!

Discovery

A Higgs boson Discovery

H->yy discovery

 $m_H = 126.8 \pm 0.2 \text{(stat)} \pm 0.7 \text{(sys)} \text{ GeV}$

A Higgs boson discovery

H->ZZ*->4l discovery (golden channel)

- > CMS: e, μ, τ channels : m(II), opening angle
- ATLAS: e,μ channels : m(II)

Mass Combination

- > Slight tension in ATLAS yy and ZZ masses
- Which Higgs have we discovered?

SM Higgs productions

gg \rightarrow H: σ =O(10) pb, gluon-gluon fusion @125 GeV

 $VV \rightarrow H$: $\sigma = O(1)$ pb, vector boson fusion

SM Higgs decays

- 1.5 pb for ττ;very difficult
- > 0.25 pb for WW*→ℓvℓv: only m_t
- > 0.1 pb for VBF $\tau\tau$, WH $\rightarrow \ell\nu$ bb, ZZ* $\rightarrow \ell\ell$ qq, $\ell\ell\nu\nu$: only m_t
- > 0.05 pb for H→γγ: mass: ok, but S/B<<1</p>
- 0.003 pb H→ZZ*→40: "gold-plate" mode
- > 0.004 pb H → μμ: huge DY bkgds

Higgs: signal strengths

Higgs signal strengths (to fermion and bosons) are consistent with the SM predictions

$H \rightarrow WW (\rightarrow IvIv)$

> 2 hi-pt leptons

ATLAS:use m_T

$$\mu = 0.99^{+0.31}_{-0.28}$$

CMS: use m_T & m(II)

 $\mu = 0.68 \pm 0.20$

VH(⇒bb)

 $\mu = 1.0 \pm 0.5$

Other Higgs decays

Higgs Couplings

- > ATLAS and CMS are compatible with the SM at the 10% level
- Assumption:
 - One Higgs resonance with narrow width
 - 2-parameter bench-mark model with only fermion (κ_F) and vector coupling (κ_V) modifiers

Higgs, top, W masses

 Consistency of the precise electroweak data (W, top masses) against Higgs mass

 $m_H = 94^{+25}_{-22}$ GeV (indirect) from the EWK fit; consistent within 1.3 σ

 $m_t = 173.2 \pm 0.9$ GeV (direct) from Tevatron = $175.8^{+2.7}_{-2.4}$ GeV (indirect) fromt the EWK fit LHC: 173.2 ± 1.0 GeV (direct)

Higgs Spin

- Combined channels using
 H→WW*→eνμν, H→ZZ*→4I,
 H→γγ, almost full statistics
 - Data strongly favor the J P = 0+ hypothesis
 - J^P = 2+ hypothesis is excluded with CL>99.9%

Searches for Charged Higgs

- ► H[±] (H⁰, h⁰, A⁰, H[±]) is predicted by the Beyond SM
- > Searches for $H^+ \rightarrow \tau v$ in the events

Searches for Charged Higgs

Searches for H⁺→cs: look for a second peak in m(jj)

Higgs Summary

- Experiments transited from discovery to precision phase
- First measurements of the new boson couplings (boson and fermion) are all in agreement with SM predictions
- Different spin/parity hypotheses were tested and the SM-predicted hypothesis, 0⁺, has strong preference
- More data needed to determine the Yukawa couplings in the quark and lepton sectors (especially, ttH, H(μμ)), and to search for BSM Higgs

Searches

Exotics

Even with a SM-like Higgs discovery, still many questions unsolved by the SM: either SUSY or exotic model?

> Strategy

- Pursue signature-driven analyses; search for resonances (dilepton, ttbar, heavy quark, diboson), and signatures for slow-moving, long-lived particles etc
- Interpret in specific models to obtain limits on masses, scales

Dilepton resonance

ttbar resonance

Leptophobic Z':
narrow width 1%
KK gluon: broad width
10%

Exlusion @95% CL limit (Bayesian)

0.5 TeV < m_Z <1.74 TeV</p>

0.5 TeV < mg_{KK}
2.07 TeV

Un-ki Yang, SNU

Diboson resonance

W' in the Extended Gauge Model (EGM)

Heavy Neutrino

- Neutrino oscillations requires non-zero neutrino mass and right-handed neutrinos:
 - Type-I seasaw mechanism: 100 500 GeV

The Majorana nature of the heavy neutrino: lepton number violation (same sign leptons)

Same-sign with two jets, but no MET

Dark Matter

- Searches in the context of Effective Field theory and large extra dimension
- > Direct production
 - X(=q/g,g,W/Z) is radiated from incoming quark/gluon

Higgs decay to DM

BR<65%(ATLAS),75%(CMS)

SUSY

- SUSY particles (Sparticle) decay in b/c-jets, lepton, τ, photons, invisible (MET)
- Search strategies are based on two signatures, their cross section and luminosities
- > R-parity conserving signature
 - Sparticles produced in pairs, each decays to LSP (WIMP)
 - . Stable LSP→ MET
- > R-parity violating signature
 - Single Sparticle production
 - LSP decay: resonances or multijets/multileptons

Search for SUSY

- > Searches in three major areas
 - Inclusive (1st-2nd) squarks and gluinos
 - 3rd generation squarks
 - charginos and neutralinos

> No signal observed

Summary & outlook

- LHC and experiments have made fabulous performance, leading to the discovery of a Higgs particle and precision tests on the Standard Model at the unprecedented level even in Run 1 phase
- No hints of new physics yet!!, but many limits on new physics have been pushed to much higher scale, still 2011,2012 data are actively being analyzed in many new physics area
- With coming 13-14 TeV collision with 70-100/fb data, LHC physics reach at TeV mass scale will be greatly extended at Run 2

Heavy Neutrinos

s-ch.: W exchanage

t-ch.: W-γ fusion

- t-ch W-g fusion is found to be significant: arXiv:1308.2209[hep-ph]
- Effect becomes larger at 14 TeV

