Flavour Physics (II)

History and recent progress at LHC

Summer Institute 2013
17-23 August 2013, Jirisan National Park, Korea

Tatsuya NAKADA
Laboratory for High Energy Physics (LPHE)
Swiss Federal Institute of Technology Lausanne (EPFL)
Lausanne, Switzerland

LPHE

Standard Model Flavour Framework

flavour eigenstatetates $\quad \Rightarrow \quad$ masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation

$$
\left.\begin{array}{l}
V_{\text {CKM }}=\left(\begin{array}{lll}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right) \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-i A^{2} \lambda^{5} \eta & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\hat{\rho}-i \hat{\eta}) & -A \lambda^{2}-i A \lambda^{4} \eta & 1 \\
\lambda=\sin \theta_{\text {Cabibbo }} \approx 0.22
\end{array} \begin{array}{l}
A \approx 0.8 \\
\rho^{2}+\eta^{2} \approx 0.3 \\
(1-\hat{\rho})^{2}+\hat{\eta}^{2} \approx 0.9
\end{array} \quad \hat{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right), \hat{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)\right.
\end{array}\right)
$$

$\mathrm{b} \rightarrow \mathrm{s} \gamma$ decays and $\mathrm{B}_{\mathrm{s}}{ }^{0}-\overline{\mathrm{B}}_{\mathrm{s}}{ }^{0}$ oscillations for $\left|V_{\mathrm{ts}}\right|$

Standard Model Flavour Framework

- By the early 90's, the Standard Model model description of "flavour" through the Cabibbo-Kobayashi-Maskawa mass mixing matrix established well enough (nuclear β decays, kaon decays, charm decays and b decays, in particular with ε_{K} and Δm_{d} with little uncertainty from the still unmeasured m_{t}), to make a firm statement such as
- If CPV is generated by the CKM phase, CPV in the $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$ decays must be observed with $>5 \sigma$ within a few years of running with an asymmetric B factory with a luminosity of $\sim 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\rightarrow This was the main motivation for asymmetric B factories

Standard Model Flavour Framework

- For example

$$
\begin{aligned}
\operatorname{Im}(\lambda) & \approx \frac{2 \sqrt{2}|\varepsilon|}{A^{2} S_{c}^{4}}\left(\frac{\Delta m_{K}}{\Delta m_{B}}\right)\left(\frac{m_{B}}{m_{K}}\right)\left(\frac{\eta_{B}}{\eta_{3}}\right)\left(\frac{f_{B}^{2} B_{B}}{f_{K}^{2} B_{K}}\right) \\
& \approx 0.3 \cdot\left(\frac{1}{A^{2}}\right) \cdot\left(\frac{f_{B}^{2} B_{B}}{f_{K}^{2} B_{K}}\right) .
\end{aligned}
$$

- From "Feasibility study for a B-meson factory in the ISR tunnel", CERN Yellow Report CERN 90-02

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

First 2×2 sub-matrix: four $\left|V_{i j}\right|$ are measured by nucleus, pion, kaon and charm hadron decays
It is "almost" unitary with one single parameter
$\lambda\left(\equiv \sin \theta_{\text {Cabibbo }}\right)=\left|V_{\text {us }}\right|=0.2252 \pm 0.0009$ (PDG 2012)

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays

$$
\left|V_{\mathrm{cb}}\right|=\left\{\begin{array}{l}
(41.9 \pm 0.7) \times 10^{-3} \text { inclusive } \\
(39.6 \pm 0.9) \times 10^{-3} \text { exclusive }
\end{array}\right.
$$ -errors limited theoretically-

2.0σ discrepancy
(PDG 2012)

$$
\left|V_{\mathrm{ub}}\right|=\left\{\begin{array}{l}
\left(4.41 \pm 0.15^{+0.15}-0.19\right) \times 10^{-3} \text { inclusive } \\
(3.23 \pm 0.31) \times 10^{-3} \text { exclusive }
\end{array}\right.
$$

-errors very limited theoretically-
$\sim 3 \sigma$ discrepancy
(PDG 2012)

Exclusives systematically smaller than inclusive?
Better QCD calculations needed.

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{c}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention $\arg V_{\mathrm{ub}}$ by CP violation in $\mathrm{B} \rightarrow \mathrm{DK}$

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "
 two decay diagrams producing identical final states

$$
V_{\mathrm{cb}} V_{\mathrm{us}}^{*}
$$

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "
two decay diagrams producing identical final states

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "

two decay diagrams producing identical final states

$$
\mathrm{K}^{+} V_{\mathrm{cb}} V_{\mathrm{us}}^{*} V_{\mathrm{cd}}^{*} V_{\mathrm{us}}
$$

$$
V_{\mathrm{ub}} V_{\mathrm{cs}}^{*}
$$

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "
two decay diagrams producing identical final states

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "
two decay diagrams producing identical final states

interfere

$\rightarrow \mathrm{CPV}$ $F\left(\arg V_{\mathrm{ub}}\right)$

Some details on $V_{\text {CKM }}$

$\arg V_{\text {ub }}$ so called angle " γ " or " ϕ_{1} "
two decay diagrams producing identical final states

$\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi-\right.\right.$
What kind of diagrams?

$$
{ }^{\mathrm{cd}}{ }^{*} V_{\mathrm{us}} \text { interfere }
$$

and also
$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{-} \pi^{+}\right]_{\mathrm{D} \text {-mass }} \mathrm{K}^{-}\right) \neq \mathrm{Br}\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D} \text {-mass }} \mathrm{K}^{+}\right)$

Some details on $V_{\text {CKM }}$

$\arg V_{\text {ub }}$ so called angle " γ " or " ϕ_{1} " two decay diagrams producing identical final states

$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \mathrm{K}^{-}\right]_{\mathrm{D} \text {-mas }} \mathrm{K}^{-}\right) \neq \mathrm{Br}\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{K}^{+} \mathrm{K}^{-}\right]_{\mathrm{D} \text {-mass }} \mathrm{K}^{+}\right)$
$\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow\left[\pi^{+} \pi^{-}\right]_{\mathrm{D}-\text { mass }} \mathrm{K}^{-}\right) \neq \mathrm{Br}\left(\mathrm{B}^{+} \rightarrow\left[\pi^{+} \pi^{-}\right]_{\mathrm{D}-\text { mass }} \mathrm{K}^{+}\right)$

Some details on $V_{\text {CKM }}$

$\arg V_{\text {ub }}$ so called angle " γ " or " ϕ_{1} " two decay diagrams producing identical final states

$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right]_{\mathrm{D}-\text { mass }} \mathrm{K}^{-}\right) \neq \operatorname{Br}\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right]_{\mathrm{D}-\text { mass }} \mathrm{K}^{+}\right)$
Dalitz $\left(\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right)$plot analysis needed

Some details on $V_{\text {CKM }}$

$\arg V_{\mathrm{ub}}$ so called angle " γ " or " ϕ_{1} "
two decay diagrams producing identical final states
Pre-LHC average $=\left(68{ }_{-11}^{+10}\right)^{\circ}($ PDG 2012 $)$
-Determined by the "tree" level amplitude interference between V_{cb} and V_{ub} no "New Physics" effect
-Based on the $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{B}$ factory experiments: BABAR and BELLE
-LHCb contribution next lecture

Pre-LHC Status of $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention $\arg V_{\text {ub }}$ by CP violation in $\mathrm{B} \rightarrow \mathrm{DK}$
$V_{\mathrm{tb}} \approx 1$ if we assume $V_{\text {СКм }}$ to be unitary

Pre-LHC Status of $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention $\arg V_{\text {ub }}$ by CP violation in $\mathrm{B} \rightarrow \mathrm{DK}$
$V_{\mathrm{tb}} \approx 1$ if we assume $V_{\text {CKM }}$ to be unitary
$\left|V_{\mathrm{td}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}^{0}-\mathrm{B}^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{d}}\right)$
$\left|V_{\mathrm{ts}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}_{\mathrm{s}}{ }^{0}-\mathrm{B}_{\mathrm{s}}{ }^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{s}}\right)$

Some details on $V_{\text {CKM }}$

B- $\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

$$
\begin{aligned}
\Delta m & =2\left|M_{12}\right| \propto\left|V_{\mathrm{td}}\right|^{2}\left|V_{\mathrm{tb}}\right|^{2} \\
& =(0.507 \pm 0.004) \mathrm{ps}^{-1} \quad(\text { PDG 2012 })
\end{aligned}
$$

Some details on $V_{\text {CKM }}$

B- $\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

$\mathrm{B} f^{2}$: hadronic matrix elements

Some details on $V_{\text {CKM }}$

$\mathrm{B}-\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

$\mathrm{B} f^{2}$: hadronic matrix elements

Some details on $V_{\text {CKM }}$

B- $\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

Some details on $V_{\text {CKM }}$

B- $\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

Some details on $V_{\text {CKM }}$

B- $\overline{\mathrm{B}}$ oscillation: dispersive part of the box diagram: M_{12}

$\mathrm{B} f^{2}$: hadronic matrix elements
$\left.\begin{array}{l}\left|V_{\text {td }}\right|=(8.4 \pm 0.6) \times 10^{-3} \\ \left|V_{\text {ts }}\right|=(38.7 \pm 2.1) \times 10^{-3}\end{array}\right\} \begin{aligned} & \text { errors are totally theoretical: } \mathrm{B} f^{2}\end{aligned}$
$\left|V_{\mathrm{td}} / V_{\mathrm{ts}}\right|=0.211 \pm 0.001 \pm 0.006\left(\mathrm{~B}_{\mathrm{d}} f_{\mathrm{d}}{ }^{2}\right) /\left(\mathrm{B}_{\mathrm{s}} f_{\mathrm{s}}{ }^{2}\right)$: smaller error ${ }^{(\text {PDG } 2012)} \Delta m_{\mathrm{s}}$ measured only at the hadron machines

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{\mathrm{cb}}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention $\arg V_{\text {ub }}$ by CP violation in $\mathrm{B} \rightarrow \mathrm{DK}$
$V_{\mathrm{tb}} \approx 1$ if we assume $V_{\text {CKM }}$ to be unitary
$\left|V_{\mathrm{td}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}^{0}-\mathrm{B}^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{d}}\right)$
$\left|V_{\mathrm{ts}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}_{\mathrm{s}}{ }^{0}-\mathrm{B}_{\mathrm{s}}{ }^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{s}}\right)$

Some details on $V_{\text {CKM }}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{lll}
1 & \lambda & V_{\mathrm{ub}} \\
-\lambda & 1 & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

$\left|V_{c b}\right|$ and $\left|V_{\mathrm{ub}}\right|$ measured by semileptonic B_{u} and B_{d} decays $\arg V_{\mathrm{cb}}=0$ by a phase convention $\arg V_{\text {ub }}$ by CP violation in $\mathrm{B} \rightarrow \mathrm{DK}$
$V_{\mathrm{tb}} \approx 1$ if we assume $V_{\text {CKM }}$ to be unitary
$\left|V_{\mathrm{td}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}^{0}-\mathrm{B}^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{d}}\right)$
$\left|V_{\mathrm{ts}}\right| x\left|V_{\mathrm{tb}}\right|$ by $\mathrm{B}_{\mathrm{s}}{ }^{0}-\mathrm{B}_{\mathrm{s}}{ }^{0}$ oscillation frequency $\left(\Delta m_{\mathrm{s}}\right)$
$\arg V_{\mathrm{td}}$ by CP violation in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$
$\arg V_{\text {ts }}$ by CP violation in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

Some details on $V_{\text {CKM }}$

$\overline{\mathrm{B}}^{0} \longrightarrow \overline{\mathrm{~B}}^{0} \longrightarrow \mathrm{~b} \rightarrow \underset{\mathrm{c}}{\mathrm{c}+\overline{\mathrm{c} s}: V_{\mathrm{cb}} V_{\mathrm{cs}}{ }^{*} \propto e^{10}} \begin{gathered}\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\end{gathered}$

Some details on V_{CKM}

Some details on $V_{\text {CKM }}$

two processes interfere $\rightarrow \mathrm{CPV} \propto \sin 2 \arg V_{\mathrm{td}}$

Some details on $V_{\text {CKM }}$

$$
\begin{aligned}
& \overline{\mathrm{B}}_{t=0}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}(t) \\
& \mathrm{B}_{t=0}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}(t)
\end{aligned}
$$

BABAR: Phys. Rev. Lett. 87, 091801 (2001)
BELLE: Phys. Rev. Lett. 87, 091802 (2001)

Some details on V_{CKM}

 two processes interfere $\rightarrow \mathrm{CPV} \propto \sin 2 \arg V_{\mathrm{td}}$ $0.679 \pm 0.020 \quad$ (PDG 2012)

Some details on $V_{\text {CKM }}$

$\overline{\mathrm{B}}_{\mathrm{s}}{ }^{0} \longrightarrow \overline{\mathrm{~B}}_{\mathrm{s}}{ }^{0} \longrightarrow \underset{\mathrm{~J} / \psi \phi}{\mathrm{b}+\overline{\mathrm{c} s:} V_{\mathrm{cb}} V_{\mathrm{cs}}{ }^{*} \propto e^{10}}$

Some details on V_{CKM}

Some details on $V_{\text {CKM }}$

two processes interfere $\rightarrow \mathrm{CPV} \propto \sin 2 \arg V_{\text {ts }}$ was not well measured before the start of LHCb

Some details on V_{CKM}

two processes interfere $\rightarrow \mathrm{CPV} \propto \sin 2 \arg V_{\text {ts }}$ was not well measured before the start of LHCb

Some details on $V_{\text {CKM }}$

$$
\approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-i A^{2} \lambda^{5} \eta & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\hat{\rho}-i \hat{\eta}) & -A \lambda^{2}-i A \lambda^{4} \eta & 1
\end{array}\right) \begin{aligned}
& \hat{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right) \\
& \hat{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

A from $\left|V_{\mathrm{cb}}\right|, \rho$ and η from $\left\{\begin{array}{l|l}\left|V_{\mathrm{ub}}\right| \text { and } \arg V_{\mathrm{ub}} & \begin{array}{l}\text { many way to } \\ \left|\left.\right|_{\mathrm{tb}}\right| \text { and } \arg V_{\mathrm{tb}} \\ \left\lvert\, \begin{array}{l}\text { get solutions } \\ \left|{ }_{\mathrm{ub}}\right| \\ \\ \left|V_{\mathrm{td}}\right| \text { and }\left|\mathrm{arg}_{\mathrm{tb}}\right| \\ V_{\mathrm{ub}}\end{array}\right. \\ \text { i.e. } \\ \text { consistency } \\ \text { can be checked }\end{array}\end{array}\right.$

Summary of the V_{CKM}

- All input from B factories, except ε_{K} and Δm_{s}

- All the measurements agree with the CKM framework

Lorentz structure of the loop

- Muon A_{FS} in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$

Lorentz structure of the loop

- Muon A_{FS} in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$

BELLE (PRL2009)
BABAR (PRD2009)
CDF (PRL2011)

Before the start of the LHC situation was not clear

Standard model

Before the LHC start up

- BABAR and Belle, with high statistics B_{u} and B_{d} sample, successfully demonstrated that the quark flavour can be quantitatively well described by the CKM mechanism of the Standard Model, including CP violation. Their analysis went well beyond the original expectations, e.g. angle $\gamma\left(\phi_{3}\right)$ measurement.
- CDF and D 0 have started to explore the B_{s} meson system: e.g. discovery of $B_{s}-\bar{B}_{s}$ oscillations:
- However, CP violation in the B_{s} system remained as a largely unexplored territory, as well as very rare decays, e.g. $\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}$, and high statistic decay topology studies of rare decays, e.g. $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$.
- Several evidences were seen for $\mathrm{D}-\overline{\mathrm{D}}$ oscillations, but statistics were not enough to explore CP violation.

LHC with flavour relevant experiments

Flavour Physics at Hadron Machines

Production of heavy flavour

Flavour Physics at Hadron Machines

Production of heavy flavour

important input for designing an experiment

Flavour Physics at Hadron Machines

that is why LHCb is a forward spectrometer

Flavour Physics at Hadron Machines

and additional advantage is
For triggering.... $p>p_{\text {min }}$
muon: identification hadron: energy resolution

$$
\sigma_{\mathrm{E}} / E \approx \sqrt{ } 70 \% / \sqrt{ } E
$$

Flavour Physics at Hadron Machines

 and additional advantage isFor triggering.... $p>p_{\text {min }}$ muon: identification hadron: energy resolution

forward: p_{T} threshold can be set low: \rightarrow high b efficiency

Flavour Physics at Hadron Machines

Flavour Physics at Hadron Machines

 Reconstruction of B decay vertex with a good resolution is essential to reduce combinatorial background:decay vertex: >1 well reconstructed tracks
well reconstructed track $=$

- charged particle seen by vertex detector
- reconstructed particle from tracks measured by vertex detector
$\mathrm{D}^{0}\left(\mathrm{~K}^{-} \pi^{+}\right), \mathrm{D}_{\mathrm{s}}\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}\right)$, etc., also K_{S}

examples are

$\mathrm{B}_{(\mathrm{s})}{ }^{0} \rightarrow l^{+} l^{-}, \mathrm{h}^{+} \mathrm{h}^{-}, \mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{D}_{\mathrm{s}}\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}\right) \pi^{+}, \mathrm{B}^{+} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right) \mathrm{K}^{+}$

Flavour Physics at Hadron Machines

Reconstruction of B decay vertex with a good resolution

 is essential to reduce combinatorial background:decay vertex: >1 well reconstructed tracks
well reconstructed track $=$

- charged particle seen by vertex detector
- reconstructed particle from tracks measured by vertex detector
$\mathrm{D}^{0}\left(\mathrm{~K}^{-} \pi^{+}\right), \mathrm{D}_{\mathrm{s}}\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}\right)$, etc., also K_{S}

examples are

$\mathrm{B}_{(\mathrm{s})}{ }^{0} \rightarrow l^{+} l^{-}, \mathrm{h}^{+} \mathrm{h}^{-}, \mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{D}_{\mathrm{s}}\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}\right) \pi^{+}, \mathrm{B}^{+} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right) \mathrm{K}^{+}$
K_{S} not seen by the vertex detector, π^{0} and γ can be associated to a reconstructed vertex (if not too many)
$\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}, \mathrm{K}^{* 0}\left(\mathrm{~K}^{+} \pi^{-}\right) \gamma, \rho^{0}\left(\pi^{+} \pi^{-}\right) \pi^{0}$, etc. are possible
but not
$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{S} \pi^{0}, \rho^{+}\left(\pi^{+} \pi^{0}\right) \pi^{0}, \pi^{0} v v$, etc.
$\mathrm{B}^{+} \rightarrow \mu^{+} v, \mathrm{~K}^{+} \nu v, \tau^{+} v$

Flavour Physics at Hadron Machines

