Flavour Physics (II) History and recent progress at LHC **Summer Institute 2013** 17 - 23 August 2013, Jirisan National Park, Korea #### Tatsuya NAKADA Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland #### Standard Model Flavour Framework flavour eigenstatetates - -non-diagonal mass matrix - -strong and EM interactions - -flavour conservation $$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$$ masseigenstates - -diagonal mass matrix - -weak interactions - -flavour changing $$\lambda \qquad A\lambda^{3}(\rho - i\eta)$$ $$1 - \frac{\lambda^{2}}{2} \qquad A\lambda^{2}$$ $$-A\lambda^{2} - iA\lambda^{4}\eta \qquad 1$$ $$\hat{\rho} = \rho \left(1 - \frac{\lambda^{2}}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^{2}}{2}\right)$$ b \rightarrow sy decays and B_s⁰- \overline{B}_{s}^{0} oscillations for $|V_{ts}|$ $\rho^2 + \eta^2 \approx 0.3$ $(1 - \hat{\rho})^2 + \hat{\eta}^2 \approx 0.9$ #### Standard Model Flavour Framework - By the early 90's, the Standard Model model description of "flavour" through the Cabibbo-Kobayashi-Maskawa mass mixing matrix established well enough (nuclear β decays, kaon decays, charm decays and b decays, in particular with $\varepsilon_{\rm K}$ and $\Delta m_{\rm d}$ with little uncertainty from the still unmeasured $m_{\rm t}$), to make a firm statement such as - If CPV is generated by the CKM phase, CPV in the $B→J/ψK_S$ decays must be observed with >5σ within a few years of running with an asymmetric B factory with a luminosity of ~10³³cm⁻²s⁻¹ - → This was the main motivation for asymmetric B factories #### Standard Model Flavour Framework For example $$\operatorname{Im}(\lambda) \approx \frac{2\sqrt{2}|\varepsilon|}{A^2 S_c^4} \left(\frac{\Delta m_K}{\Delta m_B}\right) \left(\frac{m_B}{m_K}\right) \left(\frac{\eta_B}{\eta_3}\right) \left(\frac{f_B^2 B_B}{f_K^2 B_K}\right)$$ $$\approx 0.3 \cdot \left(\frac{1}{A^2}\right) \cdot \left(\frac{f_B^2 B_B}{f_K^2 B_K}\right).$$ $f_{\rm B}$ was considered to be ≈ 110 MeV at that time Now ≈ 230 MeV • From "Feasibility study for a B-meson factory in the ISR tunnel", CERN Yellow Report CERN 90-02 $$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$ First 2×2 sub-matrix: four $|V_{ij}|$ are measured by nucleus, pion, kaon and charm hadron decays It is "almost" unitary with one single parameter $\lambda \ (\equiv \sin \theta_{\text{Cabibbo}}) = |V_{\text{us}}| = 0.2252 \pm 0.0009 \ (\text{PDG 2012})$ $$V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$ $$V_{\text{CKM}} pprox egin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays $$|V_{cb}| = \begin{cases} (41.9 \pm 0.7) \times 10^{-3} \text{ inclusive} \\ (39.6 \pm 0.9) \times 10^{-3} \text{ exclusive} \end{cases}$$ -errors limited theoretically- $$|V_{ub}| = \begin{cases} (4.41 \pm 0.15^{+0.15}_{-0.19}) \times 10^{-3} \text{ inclusive} \\ (3.23 \pm 0.31) \times 10^{-3} \text{ exclusive} \end{cases}$$ -errors very limited theoretically- Exclusives systematically smaller than inclusive? Better QCD calculations needed. $$V_{\mathrm{CKM}} pprox egin{pmatrix} 1 & \lambda & V_{\mathrm{ub}} \\ -\lambda & 1 & V_{\mathrm{cb}} \\ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{pmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention $$V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $$b \xrightarrow{u} c$$ $$\overline{c}$$ $$\overline{u} \leftarrow \underline{s} \underline{u} K^{-}$$ $$V_{ m ub}V_{ m cs}^{*}$$ arg V_{ub} so called angle " γ " or " ϕ_1 " two decay diagrams producing identical final states Br $(B^- \rightarrow [K_S \pi^+ \pi^-]_{D-mass} K^-) \neq Br (B^+ \rightarrow [K_S \pi^+ \pi^-]_{D-mass} K^+)$ Dalitz $(K_S \pi^+ \pi^-)$ plot analysis needed Pre-LHC average = $$(68 + 10 - 11)^{\circ}$$ (PDG 2012) - -Determined by the "tree" level amplitude interference between $V_{\rm cb}$ and $V_{\rm ub}$ no "New Physics" effect - -Based on the e⁺e⁻ B factory experiments: BABAR and BELLE - -LHCb contribution next lecture #### Pre-LHC Status of V_{CKM} $$V_{\text{CKM}} \approx \begin{bmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary #### Pre-LHC Status of V_{CKM} $$V_{\text{CKM}} \approx \begin{bmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1 \text{ if we assume } V_{CKM} \text{ to be unitary}$ $|V_{td}| \times |V_{tb}| \text{ by } B^0 - B^0 \text{ oscillation frequency } (\Delta m_d)$ $|V_{ts}| \times |V_{tb}| \text{ by } B_s^0 - B_s^0 \text{ oscillation frequency } (\Delta m_s)$ $B-\overline{B}$ oscillation: dispersive part of the box diagram: M_{12} $$\Delta m = 2|M_{12}| \propto |V_{td}|^2 |V_{tb}|^2$$ $$= (0.507 \pm 0.004) \text{ ps}^{-1} \text{ (PDG 2012)}$$ $B-\overline{B}$ oscillation: dispersive part of the box diagram: M_{12} $\mathbf{B}f^2$: hadronic matrix elements B-B oscillation: dispersive part of the box diagram: M_{12} $\mathbf{B}f^2$: hadronic matrix elements B-B oscillation: dispersive part of the box diagram: M_{12} B-B oscillation: dispersive part of the box diagram: M_{12} $|V_{td}| = (8.4 \pm 0.6) \times 10^{-3}$ $|V_{ts}| = (42.9 \pm 2.6) \times 10^{-3}$ errors are totally theoretical: Bf² (PDG 2012) B-B oscillation: dispersive part of the box diagram: M_{12} $$|V_{\rm td}| = (8.4 \pm 0.6) \times 10^{-3}$$ errors are totally theoretical: Bf² $|V_{\rm ts}| = (38.7 \pm 2.1) \times 10^{-3}$ $|V_{\rm td}/V_{\rm ts}| = 0.211 \pm 0.001 \pm 0.006$ $(B_{\rm d}f_{\rm d}^{-2})/(B_{\rm s}f_{\rm s}^{-2})$: smaller error $(PDG\ 2012) \Delta m_{\rm s}$ measured only at the hadron machines $$V_{\text{CKM}} \approx \begin{bmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix}$$ $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1 \text{ if we assume } V_{CKM} \text{ to be unitary}$ $|V_{td}| \times |V_{tb}| \text{ by } B^0 - B^0 \text{ oscillation frequency } (\Delta m_d)$ $|V_{ts}| \times |V_{tb}| \text{ by } B_s^0 - B_s^0 \text{ oscillation frequency } (\Delta m_s)$ $$V_{\text{CKM}} \approx \begin{bmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix}$$ $IV_{cb}I$ and $IV_{ub}I$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary $IV_{td}I \times IV_{tb}I$ by B^0-B^0 oscillation frequency (Δm_d) $IV_{ts}I \times IV_{tb}I$ by $B_s^0-B_s^0$ oscillation frequency (Δm_s) arg V_{td} by CP violation in $B_d \rightarrow J/\psi K_S$ arg V_{ts} by CP violation in $B_s \rightarrow J/\psi \phi$ $$\overline{\mathrm{B}}^0$$ $\overline{\mathrm{B}}^0$ $b \rightarrow \mathrm{c} + \bar{\mathrm{c}} \mathrm{s} : V_{\mathrm{cb}} V_{\mathrm{cs}}^* \propto e^{i0}$ $J/\psi \ \mathrm{K_S}$ $b \rightarrow \bar{\mathrm{c}} + \bar{\mathrm{c}} \mathrm{s} : V_{\mathrm{cb}} V_{\mathrm{cs}} \propto e^{i0}$ $b \rightarrow \bar{\mathrm{c}} + \bar{\mathrm{c}} \mathrm{s} : V_{\mathrm{cb}}^* V_{\mathrm{cs}} \propto e^{i0}$ two processes interfere \rightarrow CPV \propto sin $2 \text{arg} V_{\text{td}}$ BABAR: Phys. Rev. Lett. 87, 091801 (2001) BELLE: Phys. Rev. Lett. 87, 091802 (2001) two processes interfere \rightarrow CPV \propto sin $\frac{2}{\text{arg}}V_{\text{td}}$ 0.679 ± 0.020 (PDG 2012) Some details on $$V_{\text{CKM}}$$ $$\overline{B}_{s}^{0} \longrightarrow \overline{B}_{s}^{0} \longrightarrow c+\overline{c}s: V_{cb}V_{cs}^{*} \propto e^{\iota 0}$$ $$J/\psi \phi$$ two processes interfere \rightarrow CPV \propto sin $2 \text{arg} V_{\text{ts}}$ was not well measured before the start of LHCb two processes interfere \rightarrow CPV \propto sin $2 \text{arg} V_{\text{ts}}$ was not well measured before the start of LHCb # Some details on V_{CKM} $$\approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \end{pmatrix} \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right)$$ $$\hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right)$$ $A \text{ from } |V_{cb}|, \rho \text{ and } \eta \text{ from } \begin{cases} |V_{ub}| \text{ and arg } V_{ub} \\ |V_{tb}| \text{ and arg } V_{tb} \\ |V_{ub}| \text{ and } |V_{tb}| \\ |V_{td}| \text{ and arg } V_{ub} \end{cases} \text{ many way to get solutions i.e. }$ # Summary of the $V_{\rm CKM}$ • All input from B factories, except $\varepsilon_{\rm K}$ and $\Delta m_{\rm s}$ • All the measurements agree with the CKM framework ### Lorentz structure of the loop • Muon A_{FS} in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ ### Lorentz structure of the loop • Muon A_{FS} in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ BELLE (PRL2009) BABAR (PRD2009) CDF (PRL2011) Before the start of the LHC situation was not clear ### Before the LHC start up - BABAR and Belle, with high statistics B_u and B_d sample, successfully demonstrated that the quark flavour can be quantitatively well described by the CKM mechanism of the Standard Model, including CP violation. Their analysis went well beyond the original expectations, e.g. angle γ (ϕ_3) measurement. - CDF and D0 have started to explore the B_s meson system: e.g. discovery of B_s - \overline{B}_s oscillations: - However, CP violation in the B_s system remained as a largely unexplored territory, as well as very rare decays, e.g. $B_{s,d} \rightarrow \mu^+ \mu^-$, and high statistic decay topology studies of rare decays, e.g. $B_d \rightarrow K^{*0} \mu^+ \mu^-$. - Several evidences were seen for D-D oscillations, but statistics were not enough to explore CP violation. ### LHC with flavour relevant experiments #### Production of heavy flavour important input for designing an experiment #### Production of heavy flavour important input for designing an experiment that is why LHCb is a forward spectrometer and additional advantage is For triggering.... $$p > p_{\min}$$ muon: identification hadron: energy resolution $$p < p_{\min}$$ \longrightarrow Fe \rightarrow Fe \rightarrow $\sigma_E/E \approx \sqrt{70\%/\sqrt{E}}$ and additional advantage is For triggering.... $$p > p_{\min}$$ muon: identification hadron: energy resolution $$\begin{array}{cccc} p < p_{\min} & \longrightarrow & \\ p > p_{\min} & \longrightarrow & \\ \end{array}$$ Fe $$\sigma_{\rm E}/E \approx \sqrt{70\%/\sqrt{E}}$$ central detector forward detector forward: $p_{\rm T}$ threshold can be set low: \rightarrow high b efficiency Reconstruction of B decay vertex with a good resolution is essential to reduce combinatorial background: decay vertex: >1 well reconstructed tracks well reconstructed track = - charged particle seen by vertex detector - reconstructed particle from tracks measured by vertex detector $D^0(K^-\pi^+)$, $D_s(K^+K^-\pi^+)$, etc., also K_S examples are $B_{(s)}{}^0 \to l^+ l^-, h^+ h^-, B_s{}^0 \to D_s(K^+ K^- \pi^-) \ \pi^+, \ B^+ \to D(K_S \pi^+ \pi^-) \ K^+$ Reconstruction of B decay vertex with a good resolution is essential to reduce combinatorial background: decay vertex: >1 well reconstructed tracks well reconstructed track = - charged particle seen by vertex detector - reconstructed particle from tracks measured by vertex detector $D^0(K^-\pi^+)$, $D_s(K^+K^-\pi^+)$, etc., also K_S examples are $$B_{(s)}^{0} \rightarrow l^{+}l^{-}, h^{+}h^{-}, B_{s}^{0} \rightarrow D_{s}(K^{+}K^{-}\pi^{-}) \pi^{+}, B^{+} \rightarrow D(K_{S}\pi^{+}\pi^{-}) K^{+}$$ K_S not seen by the vertex detector, π^0 and γ can be **associated** to a reconstructed vertex (if not too many) B⁰ $$\rightarrow$$ J/ψ K_S, K*⁰(K+π⁻)γ, ρ⁰(π+π⁻)π⁰, etc. are possible but not $$B^0 \rightarrow K_S \pi^0$$, $\rho^+(\pi^+\pi^0)\pi^0$, $\pi^0 \nu \nu$, etc. $$B^+ \rightarrow \mu^+ \nu$$, $K^+ \nu \nu$, $\tau^+ \nu$