Neutrino Mass in the effective theory of the strongly-coupled supersymmetric $SU(2)_H$ gauge theory

Naoki Machida¹⁾

Collaborators: Shinya Kanemura¹⁾, Tetsuo Shindou²⁾, Toshifumi Yamada³⁾
1)Univ. of Toyama, 2)Kogakuin Univ., 3) National Central Univ. (Taiwan)

Paper in preparation

Summer Institute 2013 August 17-23, 2013, Jirisan National Park, Korea

Introduction

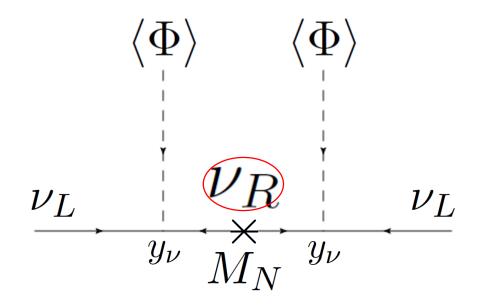
Problems in the SM

- Baryonasymmetry of the Universe
- Dark matter
- Neutrino mass

Our model can explain these problems simultaneously.

I focus on neutrino mass in this talk.

Introduction

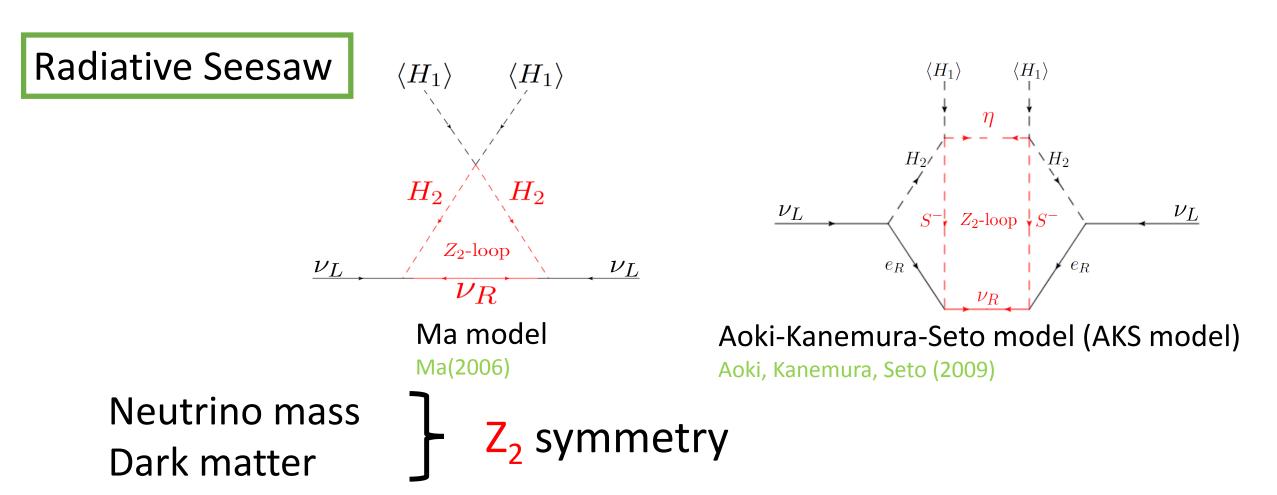

Problems in the SM

- Baryonasymmetry of the Universe
- Dark matter
- Neutrino mass

Our model can explain these problems simultaneously.

I focus on neutrino mass in this talk.

Type-I Seesaw Mechanism


Right-handed neutrino: ν_R

Neutrino mass:
$$M=rac{v^2}{M_N}y_
u^Ty_
u$$

$$y_{\nu} = O(1) \to M_N = O(10^{12}) \text{GeV}$$

The right-handed neutrino masses are too large to measure at the collider experiments.

Alternative scenario for neutrino masses

Especially, the AKS model is very interesting since coupling constants are of O(1).

Motivation

The O(1) coupling is good for electroweak first order phase transition.

Such coupling leads Landau pole between 10- 100 TeV.

Aoki, Kanemura, Yagyu(2011)

We want to know a fundamental theory above Landau pole.

The fat Higgs model is an example.

Harnik, Kribs, Larson, Murayama

This is a SUSY theory with asymptotic free.

Higgs

We consider a new model along this line.

- Baryogenesis → O(1) coupling at EW scale
- Neutrino mass→ Radiative seesaw mechanism
- Dark matter \rightarrow Z₂-odd and/or R-parity odd particle(s)

with 126 GeV SM-like Higgs boson.

Higgs
SUSY QCD

SH

Au~ 10 TeV

SUSY $SU(2)_H$ gauge theory

$$N_f=N_C+1 \rightarrow Confinement$$
 $N_C=2, N_f=3$ The Simplest

$$N_C = 2, \ N_f = 3$$

Intrigator, Seiberg (1996)

$$SU(2)_H \times SU(2)_L \times U(1)_Y \times \mathbb{Z}_2$$

Harnik, Kribs, Larson, Murayama

$SU(2)_H$ doublets

Field	$SU(2)_L$	$U(1)_Y$	Z_2
$\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right)$	2	0	+
T_3	1	+1/2	+
T_4	1	-1/2	+
T_5	1	+1/2	_
T_6	1	-1/2	_

MSSM doublets

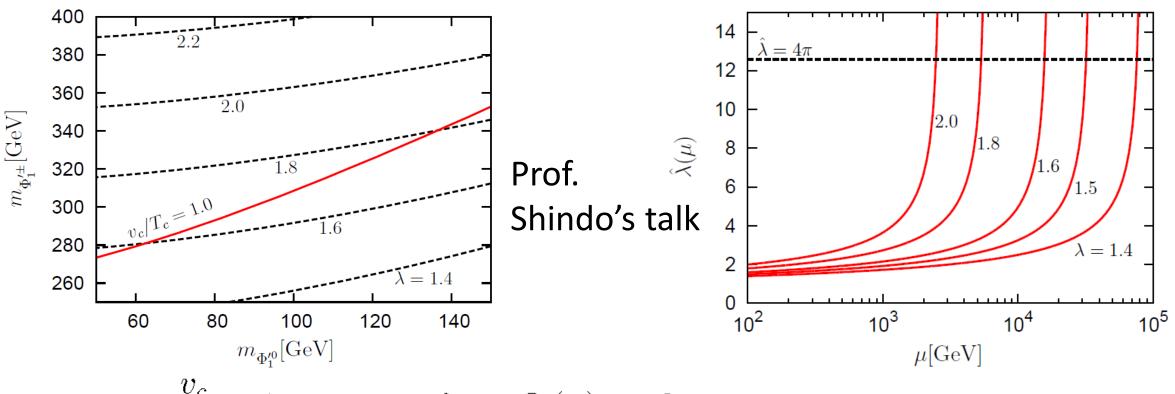
Confinement

 $M_{ij} \sim T_i T_j$

Kanemura, Shindou, Yamada (2012) Kanemura, Senaha, Shindou, Yamada (2013)

Field	$SU(2)_L$	$U(1)_Y$	Z_2
H_u	2	+1/2	+
H_d	2	-1/2	+
Φ_u	2	+1/2	_
Φ_d	2	-1/2	
\mho_+	1	+1	_
Ω	1	-1	_
N, N_{Φ}, N_{Ω}	1	0	+
$\zeta, \ \eta$	1	0	

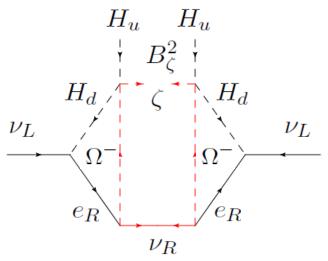
Below the cut-off scale Λ_H , fields in the low energy effective theory are mesonic fields $M_{ij}\sim T_iT_j$. This model contains the Higgs sector of the AKS model.

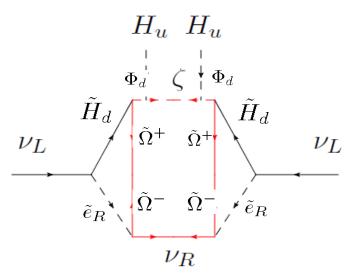

Low-energy effective theory can explain electroweak first order phase transition, neutrino mass and dark matter simultaneously.

Low energy effective theory

Low energy effective superpotential

$$W_{eff} = -\mu (H_u H_d - n_{\Phi} n_{\Omega}) - \mu_{\Phi} \Phi_u \Phi_d - \mu_{\Omega} (\Omega^+ \Omega^- - \zeta \eta)$$
$$+ \lambda (H_d \Phi_u \zeta + H_u \Phi_d \eta - H_u \Phi_u \Omega^- - H_d \Phi_d \Omega^+)$$


Kanemura, Senaha, Shindou, Yamada (2013)


 $\frac{\sigma_c}{T_c} \ge 1$ leads $\lambda \sim \mathrm{O}(1)$ \rightarrow Landau pole at 10 TeV.

Neutrino mass generation mechanism

3-loop: SUSY AKS model

Lepton flavor violation (LFV)

MEG:arXiv:1303.0754v2 [hep-ex] 23 Apr 2013 PDG, Phys. Rev. D**86**, 010001 (2012)

$$\begin{array}{c} \mu \rightarrow 3e \\ < 1.0 \times 10^{-12} \begin{array}{c} \mathrm{e} \\ \end{array}$$

This 3-loop diagrams contain all low-energy fields.

We investigate a parameter sets which satisfy neutrino oscillation data and lepton flavor violation experiments.

A benchmark point

Input parameters

$$\begin{split} \tan\beta &= 30\;, \quad m_{H^\pm} = 350 \text{GeV}\;, \quad M_{\tilde{W}} = 500 \text{GeV}\;, \\ \bar{m}_{\Omega^+}^2 &= \bar{m}_{\Phi_d}^2 = \bar{m}_{\Phi_u}^2 = (1500 \text{GeV})^2\;, \\ \bar{m}_{\zeta}^2 &= (1410 \text{GeV})^2\;, \quad \bar{m}_{\eta}^2 = (30 \text{GeV})^2\;, \quad \bar{m}_{\Omega^-}^2 = (30 \text{GeV})^2\;, \\ \mu_{\Phi} &= -\mu_{\Omega} = 550 \text{GeV}\;, \quad (\text{A terms, B terms}) = 0\;, \\ \lambda &= 1.8\;, \\ B_{\zeta}^2 &= (1400 \text{GeV})^2\;, \quad B_{\eta}^2 = m_{\zeta\eta}^2 = 0\;, \\ M_k &= (100 \text{GeV}, 2000 \text{GeV}, 4000 \text{GeV})\;, \\ m_{\tilde{\nu}_R} &= (100 \text{GeV}, 4000 \text{GeV}, 8000 \text{GeV})\;, \quad m_{\tilde{e}_R} = (6000 \text{GeV}, 6000 \text{GeV}, 6000 \text{GeV})\;, \\ h_N &= \begin{pmatrix} 0.001 & 0 & 0 \\ -0.0624 + 0.16i & -0.0314 - 0.0016i & -0.0022 + 0.000297i \\ 0.902 + 2.46i & 0.000681 - 0.00126i & -0.000755 - 0.00161i \end{pmatrix}\;. \end{split}$$

Output parameters

Neutrino masses
$$m_1 = 1.3 \times 10^{-10} \mathrm{eV} \;, \quad m_2 = 0.0089 \mathrm{eV} \;, \quad m_3 = 0.050 \mathrm{eV} \;,$$
 and mixing $\sin^2 \theta_{12} = 0.31 \;, \quad \sin 2\theta_{23}^2 = 1.0 \;, \quad \sin \theta_{13} = 0.10 \;,$

$$\begin{split} \mathrm{B}(\mu \to e \gamma) &= 5.2 \times 10^{-14} \;, \qquad \qquad \text{Higgs boson mass} \\ \mathrm{B}(\mu \to e e e) &= 4.7 \times 10^{-13} \;, \qquad \qquad m_h = 126 \mathrm{GeV} \end{split}$$

We find the parameter sets which satisfy electroweak phase transition, neutrino mass and dark matter.

Conclusion

 We have discussed neutrino mass generation mechanism by loop effect.

We have discovered the benchmark point in the 3-loop case.

We could explain

- Electroweak baryogenesis (1st order phase transition)
- Neutrino mass (Radiative seesaw scenario)
- Dark matter (multi-component dark matter scenario)
 in the framework of strongly dynamics of SUSY QCD.