TeV Scale Mirage Mediation with Vector-like Quark

Hiroki MAKINO (Kyushu university)

Collaborator: T.NAKAMURA and K.OKUMURA

H.Makino, T.Nakamura and K.Okumura in preparation

Problem of MSSM (1)

• In MSSM higgs quartic coupling is given by gauge coupling

$$\lambda_H = rac{1}{8} \left(g^2 + g'^2
ight)$$

 $egin{array}{ll} ullet &
ightarrow & ext{at tree level, higgs mass is highly constrained} \ m_{h^0} < |m_Z \cos(2eta)| & m_Z = 91 ext{GeV} & aneta = rac{\langle H_u^0
angle}{\langle H_u^0
angle}
angle \end{array}$

• There are some quantum collection

$$m_{h^0}^2pprox m_Z^2\cos^2(2eta)+rac{3y_t^2m_t^2}{4\pi^2}\ln\left(rac{m_{ ilde{t}}^2}{m_t^2}
ight) \hspace{1cm} + \hspace{1cm} \left(rac{m_{ ilde{t}}^2}{m_t^2}
ight)$$

[Y.Okada, M.Yamaguchi and T.Yanagida, Prog. Theor. Phys. 85, 1 (1991)]

BUT 125GeV Higgs boson mass is still difficult

Problem of MSSM (2)

• From potential minimization condition

$$m_Z^2 pprox -2 \left(m_{H_u}^2 + |\mu|^2
ight)$$

 m_{H_u} : parameter rerated to SUSY breaking

→ order of SUSY particle (~TeV)?

 μ : parameter which respects supersymmetry

Fine tuning between SUSY scale & EW scale is needed (Little hierarchy problem)

Model

• MSSM + Vector-like quark

[N.V.Krasnikov, Phys. Lett. B 312 133-136]

$$W = W_{ ext{MSSM}} + M \psi_{10}^{'} \psi_{ar{10}}^{'} + y^{'} ar{u}^{'} Q^{'} H_{u} \qquad \psi_{10}^{\prime} \supset (ar{u}^{\prime}, Q^{\prime}, ar{e}^{\prime})$$

Mass term

Yukawa interaction

Higgs mass

→ Quantum collection from new heavy quarks raise Higgs mass

Little hierarchy problem

Adopt Mirage Mediation to solve little hierarchy problem

Mirage Mediation

[TeV]

 $m_{\rm i}^2/|m_{\rm i}^2|^{1/2}$

- Mirage mediation
 Moduli mediation + Anomaly mediation
- •Compressed mass parameters
- •Small Higgs mass can be achieved
 - → Natural explanation for little hierarchy problem

Requirement from mirage mediation

Masses of vector-like quarks should be given by dimensionless parameter

→ vector-like quarks must get their mass from singlet VEV

[K.Choi, K.S.Jeong, K.Okumura, JHEP 09 (2005) 039]
[K.Choi, K.S.Jeong, T.Kobayashi, K.Okumura, Phys. Rev. D 75 095012]

$$W = W_{ ext{MSSM}} + \overline{\lambda S \psi_{10}^{'} \psi_{1ar{0}}^{'}} + y^{'} ar{u}^{'} Q^{'} H_{u} + \left| rac{\kappa}{3} S^{3}
ight|$$

Analysis

- Set SUSY scale (2TeV)
- Determine singlet VEV <S> by 1-loop effective potential
- Calculate Higgs mass and vector-like quark mass at the vacuum
- Check some constraints (of Higgs sector) from collider experiments

Higgs mass

- •SM-like higgs mass increase without higgs mixing : effect of vector-like quark
- Mixing effect contribute higgs mass ∼10GeV

Vector-like quark mass

- •Showing lightest vector—like quark mass
- •Red shaded area: rejected (lighter than 700GeV)
- •Changed color region on the line
- : SM-like higgs mass is 125 \pm 1 GeV
 - → near the experimental bound

Vector-lilke quark can be discovered in near future

$Z^* \rightarrow Z h$

Process of Higgs production at LEP

 \rightarrow depend on the coupling with Z

 $rac{\Gamma(h_i o ZZ)}{\Gamma(h_{
m SM} o ZZ)}=\xi_i^2$: experimental bound

Dashed line: expected SM background Solid line: observed value at LEP

difference to expected background at \rightarrow new physics?

$$Z^* \rightarrow Z h$$

•SM-like higgs mass

 $: 125 \pm 1 \text{ GeV}$

•Lightest vector-like quark

: over 700GeV

Relation between singlet-like higgs mass and $\boldsymbol{\xi}^2$

• : $\tan \beta = 10$

• : $\tan \beta = 20$

 $\cdot \quad : \tan \beta = 60$

Gray region: rejected

If singlet-like higgs is 90-100GeV, the excess of LEP may be explained

Summary

- 125GeV Higgs can be achieved with Vector-like quark
- Higgs mass is affected by not only quantum collection of new field but mixing effect with singlet
- Vector-like quark is 700-1000GeV and may be discovered near future
- Singlet-like higgs with mass 90-100GeV can explain the excess of $Z^* \to Z$ h' at LEP experiment