Particle Physics

\&

the Structure of 4 D RG Flows

Riccardo Rattazzi

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

I. Particle Physics from RG flow perspective

II. Constraining the structure of RG flows in 4 D

RR, S. Rychkov, E. Tonni, A. Vichi	arXiv:0807.0004
M. Luty, J. Polchinski, RR	arXiv:1204.5221
F. Baume, B. Keren-Zur, RR, L. Vitale	in preparation

Lecture I

Particle Physics from RG flow perspective

Effective Field Theory Paradigm

Whatever the description of physics at some high energy scale $\Lambda_{U V}$ is (strings, discrete space-time, ...)

If long wavelength excitations exist

- low energy dynamics is described by an effective field theory三 by solving an RG flow
- All structure present at UV scale decouples except for a finite number of relevant parameters

1. Decoupling of structure

IR

$$
\mathcal{L}=\sum_{i} \lambda_{i} \mathcal{O}_{i} \quad \operatorname{dim} \mathcal{O}_{i}=d_{i}
$$

~ scale

invariance

$$
\bar{\lambda}_{i}(\mu) \sim\left(\frac{\mu}{\Lambda_{U V}}\right)^{d_{i}-4} \bar{\lambda}_{i}\left(\Lambda_{U V}\right)
$$

IR

Can classify parameters according to their RG scaling

relevant
marginal
$d_{\mathcal{O}}-4=0$
\downarrow RG flow towards IR \longrightarrow infinite set of irrelevants is filtered out
\uparrow IR physics described by finitely many relevant plus marginal couplings
renormalizable
\uparrow occurence of accidental symmetries
\downarrow analogy with multipole expansion: every cow is spherical in first approx

2. The Origin of Mass Hierarchies (naturalness)

RG picture for the origin of $\Lambda_{I R}$

RG picture for the origin of $\Lambda_{I R}$

$\Lambda_{I R} \sim$

RG scale where 'distance' from UV point becomes $\mathrm{O}(1)$

Ex

- scalar mass $\quad \lambda(\mu)=\frac{m^{2}}{\mu^{2}}$
$\mu \gg m \quad \rightarrow \quad \lambda \ll 1$
$\mu \sim m \quad \rightarrow \quad \lambda \sim 1$
- QCD coupling $\quad \lambda(\mu)=\frac{\alpha_{s}(\mu)}{4 \pi}$

$$
\begin{array}{ll}
\mu \gg \Lambda_{Q C D} & \rightarrow \quad \lambda \ll 1 \\
\mu \sim \Lambda_{Q C D} & \rightarrow \quad \lambda \sim 1
\end{array}
$$

Un-natural hierarchy

$$
\begin{aligned}
& \lambda_{2} \mathcal{O}_{2} \quad 4-d_{2}=O(1)>0 \\
& \lambda_{2}(\mu)=\lambda_{2}\left(\Lambda_{U V}\right)\left(\frac{\Lambda_{U V}}{\mu}\right)^{4-d_{2}}
\end{aligned}
$$

No hierarchy unless an UV parameter is tuned $\quad \lambda_{2}\left(\Lambda_{U V}\right) \ll 1$
Ex: critical phenomena in thermal physics $\quad \lambda_{2}\left(\Lambda_{U V}\right) \propto\left(T-T_{c}\right)$

Need lab technician to turn the knob and tune temperature

Natural hierarchy

infinite hierarchy $\Lambda_{I R}=0$

- all coupling are irrelevant always flow to fixed point
- Ex: photons and phonons
dynamical hierarchy

$$
\left.\begin{array}{l}
\frac{d \ln \lambda_{2}}{d \ln \mu}=-\gamma \\
0<\gamma \ll 1
\end{array}\right\}
$$

marginally relevant coupling
λ_{2} runs slowly \Rightarrow exits fixed point at $\Lambda_{I R} \ll \Lambda_{U V}$

- Yang Mills theory
- Superconductor (BCS)

$$
\begin{aligned}
& \gamma \sim \lambda_{2} \\
& \Lambda_{I R}=\Lambda_{U V} e^{-1 / \lambda_{2}\left(\Lambda_{U V}\right)}
\end{aligned}
$$

bierarchy from symmetry: All relevant couplings explicitly break some symmetry
\uparrow Couplings associated to broken symmetries can be conceivably be made naturally small, for instance through further dynamical hierarchies
\leftrightarrow No need to turn the knob like for critical phenomena

Quantum
ChromoDynamics
Supersymmetric
Standard Model

$m_{q u a r k}$
chiral symmetry
supersymmetry

Illustration: hierarchy from marginally relevant coupling

$$
\begin{array}{ll}
\Delta \mathcal{L}=\lambda \mathcal{O} & \operatorname{dim}_{\mathcal{O}}=4-\epsilon \\
\lambda(\mu)=\lambda_{0}\left(\frac{\Lambda_{U V}}{\mu}\right)^{\epsilon} & \Lambda_{I R} \sim \lambda_{0}^{1 / \epsilon} \Lambda_{U V}
\end{array}
$$

for $\epsilon \ll 1$ a slight tuning $\lambda_{0} \sim 0.1$ generates an exponential hierarchy

The Standard Model and the Hierarchy Paradox
$\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2}$

$$
\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2}
$$

$$
\begin{aligned}
& +\frac{b_{i j}}{\Lambda_{U V}} L_{i} L_{j} H H \\
& +\frac{c_{i j k l}}{\Lambda_{U V}^{2}} \bar{F}_{i} F_{j} \bar{F}_{k} F_{\ell}+\frac{c_{i j}}{\Lambda_{U V}} \bar{F}_{i} \sigma_{\mu \nu} F_{j} G^{\mu \nu}+\ldots \\
& +\quad \ldots
\end{aligned}
$$

$$
\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2}
$$

$$
\begin{aligned}
& +\frac{b_{i j}}{\Lambda_{U V}} L_{i} L_{j} H H \\
& +\frac{c_{i j k l}}{\Lambda_{U V}^{2}} \bar{F}_{i} F_{j} \bar{F}_{k} F_{\ell}+\frac{c_{i j}}{\Lambda_{U V}} \bar{F}_{i} \sigma_{\mu \nu} F_{j} G^{\mu \nu}+\ldots
\end{aligned}
$$

$$
+\ldots
$$

$\Lambda_{U V} \gg \mathrm{TeV}$ (pointlike limit) nicely accounts for 'what we see'

$$
\begin{gathered}
+\theta \tilde{G}_{\mu \nu} \tilde{G}^{\mu \nu} \\
\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2} \\
+\frac{\mathrm{d}=4}{\Lambda_{U V}} L_{i} L_{j} H H \\
\\
+\frac{c_{i j k l}}{\Lambda_{U V}^{2}} \bar{F}_{i} F_{j} \bar{F}_{k} F_{\ell}+\frac{c_{i j}}{\Lambda_{U V}} \bar{F}_{i} \sigma_{\mu \nu} F_{j} G^{\mu \nu}+\ldots \\
\\
+\quad \ldots
\end{gathered}
$$

$\Lambda_{U V} \gg \mathrm{TeV}$ (pointlike limit) nicely accounts for 'what we see'

$$
\begin{array}{cc}
+c \Lambda_{U V}^{2} H^{\dagger} H & \mathrm{~d}=2 \\
+\theta \tilde{G}_{\mu \nu} \tilde{G}^{\mu \nu} & \mathrm{d}=4 \\
\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2} & \mathrm{~d}=4 \\
+ & \frac{b_{i j}}{\Lambda_{U V}} L_{i} L_{j} H H \\
& +\frac{c_{i j k l}}{\Lambda_{U V}^{2}} \bar{F}_{i} F_{j} \bar{F}_{k} F_{\ell}+\frac{c_{i j}}{\Lambda_{U V}} \bar{F}_{i} \sigma_{\mu \nu} F_{j} G^{\mu \nu}+\ldots \\
& +\quad \ldots
\end{array}
$$

$\Lambda_{U V} \gg \mathrm{TeV}$ (pointlike limit) nicely accounts for 'what we see'
$+\Lambda_{U V}^{4} \sqrt{g}$
$+c \Lambda_{U V}^{2} H^{\dagger} H$
$+\theta \tilde{G}_{\mu \nu} \tilde{G}^{\mu \nu}$
$\mathcal{L}_{S M}=\mathcal{L}_{k i n}+g A_{\mu} \bar{F} \gamma_{\mu} F+Y_{i j} \bar{F}_{i} H F_{j}+\lambda\left(H^{\dagger} H\right)^{2}$

$$
\begin{aligned}
& +\frac{b_{i j}}{\Lambda_{U V}} L_{i} L_{j} H H \\
& +\frac{c_{i j k l}}{\Lambda_{U V}^{2}} \bar{F}_{i} F_{j} \bar{F}_{k} F_{\ell}+\frac{c_{i j}}{\Lambda_{U V}} \bar{F}_{i} \sigma_{\mu \nu} F_{j} G^{\mu \nu}+\ldots
\end{aligned}
$$

$$
+\ldots
$$

$\Lambda_{U V} \gg \mathrm{TeV}$ (pointlike limit) nicely accounts for 'what we see'

Hierarchy see-saw

Standard Model up to some $\quad \Lambda_{U V}^{2} \gg 1 \mathrm{TeV}$

$\underline{\underline{\Lambda_{U V}} H^{\dagger} H}$
-

Hierarchy see-saw

Standard Model up to some $\quad \Lambda_{U V}^{2} \gg 1 \mathrm{TeV}$

$\underline{\underline{\Lambda_{U V}} H^{\dagger} H}$
-

Hierarchy see-saw

Standard Model up to some $\quad \Lambda_{U V}^{2} \gg 1 \mathrm{TeV}$

Natural SM: $\quad \Lambda_{U V}^{2} \lesssim 1 \mathrm{TeV}$

The two possible microphysics scenarios

I. The SM is the correct description up to $\quad \Lambda_{U V} \gg T e V$

- B, L and Flavor: beautifully in accord with observation
- Hierarchy remains a mystery, probably hinting that the question was not correctly posed
- anthropic principle
- failure of effective field theory ideology (UV/IR connection)
II. The SM is not the correct description already at $\quad \Lambda_{U V} \sim 1 \mathrm{TeV}$
- In the correct theory the hierarchy problem does not even arise (naturalness)
- What about B, L and Flavor? In practically all known models not nearly as nice as in SM

At $\mu \gg \mathrm{TeV}$ the SM with elementary Higgs is approximately a free massless field theory
= approximately Conformal Field Theory

What other options for the UV asymptotics of particle physics?

- weakly coupled natural completion : Supersymmetry
- strongly coupled CFT
- scale but not conformally invariant $\mathrm{QFT}=\mathrm{SFT}$
- theory with (approximate) RG cycles

An example of a strongly coupled CFT:

Modern Composite Higgs Models

Holdom '86
Randall, Sundrum 99
Luty-Okui 04
Agashe, Contino, Pomarol 04

General Model Structure

Two Ways to Flavor

Bilinear: ETC, conformalTC
Dimopoulos, Susskind
Holdom
Luty, Okui

Linear: partial compositeness

D.B. Kaplan

Huber

RS with bulk fermions

Wishes ...

Flavor

$$
\begin{aligned}
& \frac{1}{\Lambda_{U V}^{d_{H}-1}} H \bar{F} F+\frac{\kappa}{\Lambda_{U V}^{2}} \bar{F} F \bar{F} F \\
& \text { wish } \mathrm{d}_{\mathrm{H}} \text { as close to } 1 \text { as possible }
\end{aligned}
$$

Hierarchy

$$
c\left(\Lambda_{U V}\right)^{\Delta-4} H^{\dagger} H
$$

$\Delta \equiv \operatorname{dim}\left(H^{\dagger} H\right)$
wish $\Delta>4-\varepsilon$

$$
\left.\begin{array}{l}
\kappa=10^{-8} \sim y_{d} y_{s} \\
\kappa=1 \sim y_{t}^{2}
\end{array}\right\} \quad c \geq 0.1
$$

$\operatorname{dim}\left(H^{\dagger} H\right)$

Rattazzi, Rychkov, Tonni, Vichi 'o8
Poland, Simmons-Duffin, Vichi '11

$$
\left.\begin{array}{l}
\kappa=10^{-8} \sim y_{d} y_{s} \\
\kappa=1 \sim y_{t}^{2}
\end{array}\right\} \quad c \geq 0.1
$$

$\operatorname{dim}\left(H^{\dagger} H\right)$

Rattazzi, Rychkov, Tonni, Vichi 'o8
Poland, Simmons-Duffin, Vichi '11

Flavor from partial compositeness

$$
d_{\Psi} \sim \frac{5}{2} \rightleftharpoons \quad \begin{aligned}
& \epsilon_{q}^{i}, \epsilon_{u}^{i}, \epsilon_{d}^{i} \quad \sim \text { dimensionless } \\
& \text { all other flavor couplings decouple when } \Lambda_{U V} \rightarrow \infty
\end{aligned}
$$

- Problems of composite Higgs greatly alleviated, but not eliminated

$$
\begin{aligned}
& \mathcal{L}_{\text {Yukawa }}=\epsilon_{q}^{i} q_{L}^{i} \Psi_{q}^{i}+\epsilon_{u}^{i} u_{L}^{i} \Psi_{u}^{i}+\epsilon_{d}^{i} d_{L}^{i} \Psi_{d}^{i} \\
& Y_{u}^{i j} \sim \epsilon_{q}^{i} \epsilon_{u}^{j} g_{*} \\
& Y_{d}^{i j} \sim \epsilon_{q}^{i} \epsilon_{d}^{j} g_{*}
\end{aligned}
$$

Flavor from partial compositeness

$$
d_{\Psi} \sim \frac{5}{2} \rightleftharpoons \quad \begin{aligned}
& \epsilon_{q}^{i}, \epsilon_{u}^{i}, \epsilon_{d}^{i} \quad \sim \text { dimensionless } \\
& \text { all other flavor couplings decouple when } \Lambda_{U V} \rightarrow \infty
\end{aligned}
$$

- Problems of composite Higgs greatly alleviated, but not eliminated

$$
\begin{aligned}
& \mathcal{L}_{\text {Yukawa }}=\epsilon_{q}^{i} q_{L}^{i} \Psi_{q}^{i}+\epsilon_{u}^{i} u_{L}^{i} \Psi_{u}^{i}+\epsilon_{d}^{i} d_{L}^{i} \Psi_{d}^{i}+\frac{1}{\Lambda_{U V}^{2}} \bar{q}_{i} q_{j} \bar{q}_{k} q_{\ell}+\ldots \\
& Y_{u}^{i j} \sim \epsilon_{q}^{i} \epsilon_{u}^{j} g_{*} \\
& Y_{d}^{i j} \sim \epsilon_{q}^{i} \epsilon_{d}^{j} g_{*}
\end{aligned}
$$

Flavor from partial compositeness
$\mathcal{L}_{\text {Yukawa }}=\epsilon_{q}^{i} q_{L}^{i} \Psi_{q}^{i}+\epsilon_{u}^{i} u_{L}^{i} \Psi_{u}^{i}+\epsilon_{d}^{i} d_{L}^{i} \Psi_{d}^{i}+\frac{1}{\Lambda^{2}} \operatorname{qq}_{k} q_{\ell}+\ldots$

$$
d_{\Psi} \sim \frac{5}{2} \quad \begin{aligned}
& \epsilon_{q}^{i}, \epsilon_{u}^{i}, \epsilon_{d}^{i} \quad \sim \text { dimensionless } \\
& \text { all other flavor couplings decouple when } \Lambda_{U V} \rightarrow \infty
\end{aligned}
$$

- Problems of composite Higgs greatly alleviated, but not eliminated

Flavor transitions controlled by selection rules

$$
\epsilon_{q}^{i} \epsilon_{d}^{j} \epsilon_{q}^{k} \epsilon_{d}^{\ell} \times \frac{g_{*}^{2}}{m_{*}^{2}} \quad\left(\bar{q}^{i} \gamma^{\mu} d^{j}\right)\left(\bar{q}^{l} \gamma_{\mu} d^{\ell}\right)
$$

$\Delta \mathrm{F}=1$

Davidson, Isidori, Uhlig 'o7 Csaki, Falkowski, Weiler 'o8

Bounds \& an intriguing hint
Keren-Zur, Lodone, Nardecchia, Pappadopulo, RR, Vecchi ' 12

ϵ_{k}	$m_{\rho} \gtrsim 10 \mathrm{TeV}$
$\epsilon^{\prime} / \epsilon, \quad b \rightarrow s \gamma$	$m_{\rho} \gtrsim \frac{g_{\rho}}{4 \pi} \times(10-15) \mathrm{TeV}$
d_{n}	$m_{\rho} \gtrsim \frac{g_{\rho}}{4 \pi} \times(20-40) \mathrm{TeV}$
CP violation in D decays	If taken seriously \ldots $m_{\rho} \simeq \frac{g_{\rho}}{4 \pi} \times 10 \mathrm{TeV}$
$\Delta a_{C P}=a_{K K}-a_{\pi \pi}=-(0.33 \pm 0.12) \%$	

- connection with weak scale not perfect
- Not crazy at all to see deviation in D's first
- d_{n} should be next

$$
\mu \rightarrow e \gamma
$$

$$
\frac{\sqrt{m_{\mu} m_{e}}}{m_{\rho}^{2}} \bar{\mu} \sigma_{\alpha \beta} e F^{\alpha \beta}
$$

MEG: $\operatorname{Br}(\mu \rightarrow \mathrm{e} \gamma)<2.4 \times 10^{-12}$ $m_{\rho} \gtrsim 150 \mathrm{TeV}$

Partial compositeness clearly cannot be the full story
Must assume strong sector possesses some flavor symmetry

$$
\mathrm{U}(1)_{\mathrm{e}} \mathrm{X} \mathrm{U}(1)_{\mu \mathrm{x}}(1)_{\tau}
$$

