Flavour Physics (III) History and recent progress at LHC

Summer Institute 2013

17 - 23 August 2013, Jirisan National Park, Korea

Tatsuya NAKADA

Laboratory for High Energy Physics (LPHE)
Swiss Federal Institute of Technology Lausanne (EPFL)
Lausanne, Switzerland

Large b-b cross section at LHC

Generally in good agreement with QCD predictions

 B_s^0 - \overline{B}_s^0 oscillations: a bench mark measurement

Measure time dependent rates for

$$B_{s \text{ initial}}^{0} \Rightarrow \overline{B}_{s \text{ at } t}^{0}$$

$$\propto \cos \Delta m_{\rm s} \times t$$

Flavour Physics at Hadron Machines $B_s^0-\overline{B}_s^0$ oscillations: a bench mark measurement

flavour tagging of the initial state

 $B_{s\ initial}^{\ 0}$

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

 $\downarrow l^-X$, $c \rightarrow s \rightarrow K^-$, secondary vertex charge

opposite side tag

flavour tagging of the initial state $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$ $\frac{1}{b}$

 B_s^0 - \overline{B}_s^0 oscillations: a bench mark measurement

flavour tagging of the initial state

flavour tagging of the final state

 $\downarrow l^-X$, $c \rightarrow s \rightarrow K^-$, secondary vertex charge

opposite side tag

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

Time dependent rate $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

Fit the decay time distribution for different Δm_s with A as a parameter:

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

Time dependent rate $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

 B_s^0 - \overline{B}_s^0 oscillations: a bench mark measurement

Time dependent rate $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

Time dependent rate $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

 $B_s^0 - \overline{B}_s^0$ oscillations: a bench mark measurement

Time dependent rate $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

• State of the art $B_s - \overline{B}_s$ oscillation: LHCb with 1 fb⁻¹

$$B_s$$
 at $t = 0 \rightarrow \overline{B}_s$ at t

$$B_s$$
 at $t = 0 \rightarrow B_s$ at t

Oscillation is clearly visible

New J.Phys. 15 (2013) 053021

Hadron identification is important for hadronic final states

CDF with little hadron PID (ATLAS/CMS will be similar)

CDF Run II Preliminary $\int L dt = 6.11 \text{ fb}^{-1}$

B→hh' as an example

LHCb with with PID

Public Note 10498

CP violation in the B \rightarrow hh' decay amplitude: LHCb 1 fb⁻¹

```
A_{\rm CP}({\rm B_d} \!\!\!\! \to \!\!\!\! {\rm K}^+ \!\!\!\! \pi^-)
{\rm BABAR} \ -0.107 \!\!\!\! \pm \!\!\! 0.016_{-0.004}^{\phantom{-0.004}} \!\!\!\! ^{+0.006}
{\rm BELLE} \ -0.069 \!\!\!\! \pm \!\!\!\! 0.014 \!\!\!\! \pm \!\!\!\! 0.007
{\rm CDF} \ -0.083 \!\!\!\! \pm \!\!\!\! 0.013 \!\!\!\! \pm \!\!\!\! 0.003
{\rm LHCb} \ -0.080 \pm 0.007 \pm 0.003
A_{\rm CP}({\rm B_s} \!\!\!\! \to \!\!\!\! {\rm K}^- \!\!\! \pi^+)
{\rm CDF} \ 0.22 \pm 0.07 \pm 0.02
{\rm LHCb} \ 0.27 \pm 0.04 \pm 0.01
```

LHCb Phys. Rev. Lett.110 (2013) 221601

- Large b- \overline{b} cross sections (\sqrt{s} of LHC)
- High statistics (7-8 TeV full data: close to 30 fb⁻¹ each for ATLAS and CMS and 3 fb⁻¹ for LHCb)
- Vertex resolutions (ATLAS**, CMS**, LHCb***)
- Momentum resolutions (ATLAS**, CMS**, LHCb***)
- Particle identification muons and electrons (ATLAS, CMS, LHCb) hadron (LHCb)
- Trigger muons and electrons (ATLAS, CMS, LHCb) hadron (LHCb)

• Recall the past result

68 % CL and 95% CL

D0: 6.1 fb⁻¹ CDF: 5.2 fb⁻¹

♦ SM prediction

• relevant SM diagrams

$$M_{12}$$
 $\frac{\overline{s}}{b}$ W^+ t $W^ \frac{\overline{b}}{s}$

$$-\frac{i}{2}\Gamma_{12}W^{+}, \qquad u c$$

$$\overline{s} \qquad \overline{u} \overline{c} \qquad W^{-}$$

Tree diagram

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi \varphi_{CP=+1}$ and $J/\psi \varphi_{CP=-1}$ states from the angular distributions of the final states: additional complication

$$L_{J/\psi-\phi} = 0$$
 or 2: CP = +1, $L_{J/\psi-\phi} = 1$: CP = -1

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from the angular distributions of the final states: additional complication

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from **the** angular distributions of the final states: additional complication

Detector acceptance for the decay angles has to be well understood.

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from **the** angular distributions of the final states: additional complication

Experimental decay time distribution for $B_s^0 + \overline{B}_s^0$ contribution from the CP = +1 and -1 final states

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from the angular distributions of the final states: additional complication

 $B_s^0 + \overline{B}_s^0$ decay time distributions projected out for CP=+1 and = -1 states

Both are practically exponential decays → CP violation is small

CP=+1 state decays faster
Another phase shift study shows
CP=+1 state is lighter
As predicted by the SM.

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi \phi_{CP=+1}$ and $J/\psi \phi_{CP=-1}$ states from the angular distributions of the final states:
 - with initial flavour tag, unique solution on CP violation parameter $\phi_S^{J/\psi\phi}$ and decay width difference $\Delta\Gamma = \Gamma_L \Gamma_H$ measurements. Calibration of flavour tag needed.

Comparison of the flavour estimate, based on leptons, kaons and vertex charges, with the calibration data $B^+ \rightarrow J/\psi K^+$ for the opposite flavour tag.

Similar work for the same sign kaon tag $B_s \rightarrow D_s \pi$ necessary

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from the angular distributions of the final states:
 - with initial flavour tag, unique solution on CP violation parameter $\phi_S^{J/\psi\phi}$ and decay width difference $\Delta\Gamma = \Gamma_L \Gamma_H$ measurements.

fitting rather complicated PDF...

$$\frac{\mathrm{d}^4\Gamma(B_s^0 \to J/\psi K^+ K^-)}{\mathrm{d}t \; \mathrm{d}\Omega} \; \propto \; \sum_{k=1}^{10} \; h_k(t) \; f_k(\Omega) \; .$$

$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$$

$$+ c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)$$
],

\boldsymbol{k}	$f_k(\theta_{\mu}, \theta_K, \varphi_h)$	N_k	a_k	b_k	c_k	d_k
1	$2 \cos^2 \theta_K \sin^2 \theta_\mu$	$ A_0 ^2$	1	D	C	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \varphi_h\right)$	$ A_{\parallel} ^2$	1	D	C	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \varphi_h\right)$	$ A_{\perp} ^{2}$	1	-D	C	S
4	$\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\varphi_h$	$ A_{\parallel}A_{\perp} $	$C \sin(\delta_{\perp} - \delta_{\parallel})$	$S \cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D \cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \cos \varphi_h$	$ A_0A_{\parallel} $	$\cos(\delta_{\parallel} - \delta_0)$	$D \cos(\delta_{\parallel} - \delta_{0})$	$C \cos(\delta_{\parallel} - \ddot{\delta}_{0})$	$-S \cos(\delta_{\parallel} - \delta_0)$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \sin \varphi_h$	$ A_0A_{\perp} $	$C \sin(\ddot{\delta}_{\perp} - \delta_0)$	$S \cos(\delta_{\perp} - \delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D \cos(\delta_{\perp} - \delta_0)$
7	$\frac{2}{3} \sin^2 \theta_{\mu}$	$ A_{\rm S} ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\theta_K \sin 2\theta_\mu \cos\varphi_h$	$ A_S A_{ } $	$C \cos(\delta_{\parallel} - \delta_{S})$	$S \sin(\delta_{\parallel} - \delta_{S})$	$\cos(\delta_{\parallel} - \delta_{\rm S})$	$D \sin(\delta_{\parallel} - \delta_{S})$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K \sin 2\theta_\mu \sin\varphi_h$	$ A_{\mathbb{S}}A_{\perp} $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$-D\sin(\ddot{\delta}_{\perp} - \delta_{S})$	$C \sin(\ddot{\delta}_{\perp} - \delta_{S})$	$S \sin(\delta_{\perp} - \delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	$ A_SA_0 $	$C\cos(\delta_0 - \delta_{\mathrm{S}})$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_{\mathrm{S}})$	$D\sin(\delta_0 - \delta_S)$

- Time dependent decay rate studies for $B_s \rightarrow J/\psi \phi$ decays
 - need to distinguish $J/\psi\phi_{CP=+1}$ and $J/\psi\phi_{CP=-1}$ states from the angular distributions of the final states:
 - with initial flavour tag, unique solution on CP violation parameter $\phi_S^{J/\psi \varphi}$ and decay width difference $\Delta \Gamma = \Gamma_L \Gamma_H$ measurements.

Good agreement with the Standard Model

HFAG-2013 + LHCb new (KK+ $\pi\pi$) result (1 fb⁻¹) NB: Updated ATLAS result with the flavour tag (4.9 fb⁻¹)

CP violation in B-B oscillations

• Measured by the flavour specific decay modes, e.g. semileptonic decays: inclusively or semi-exclusively

Inclusive signature

 $h_b h_b^- \rightarrow l^- l^+$ (no oscillation) or $l^{\pm} l^{\pm}$ (with oscillation)

Inclusive signature

$$h_b B_s \to l^- l^+ D_s^- (n.o.) \text{ or } l^- l^- D_s^+ + X (w.o.)$$

• CPV is
$$a_{SL} = \frac{N(l^+l^+) - N(l^-l^-)}{N(l^+l^+) + N(l^-l^-)} \neq 0$$

CP violation in B-B oscillations

• Measured by the flavour specific decay modes, e.g. semileptonic decays: inclusively or semi-exclusively

D0 inclusive: not really compatible with $J/\psi\phi$ results

→further studies at LHC essential

$$B_s, B_d \rightarrow \mu^+ \mu^-$$

Very rare decays

Loop suppressed and helicity suppressed decays New particles in the loop can easily change the branching fractions

- Analysis exploits variables characteristic for the two body decays and muon identification: can be calibrated using $B \rightarrow \pi\pi$ and $J/\psi \rightarrow \mu\mu$ decays data
- ATLAS/CMS are competitive with LHCb

$B_s, B_d \rightarrow \mu^+ \mu^-$

• CMS and LHCb results with 7-8 TeV full statistics

$B_s, B_d \rightarrow \mu^+ \mu^-$

Combined result

CMS-LHCb combined LHCb-CONF-2013-012 CMS-PAS-BPH-13-007

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9},$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10},$$

 $B_s \rightarrow \mu^+ \mu^-$ observed, in agreement with the Standard Model $B_d \rightarrow \mu^+ \mu^-$ still insignificant, in agreement with the Standard Model

• LHCb also studied B \rightarrow e[±] μ^{\mp} : 1fb⁻¹ [arXiv:1307.4889] B⁰ < 2.8(3.7)×10⁻⁹, B_s < 1.1(1.4)×10⁻⁸ 90(95)%CL

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

• Recall previous forward-backward asymmetry results

BELLE (PRL2009) BABAR (PRD2009) CDF (PRL2011)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

• Most recent CMS and LHCb results on A_{FR}

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

LHCb also studied another set of variables

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ & + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right], \end{split} \qquad \qquad P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_\mathrm{L}(1-F_\mathrm{L})}}. \end{split}$$

In general, all the measurements agree with the SM prediction.

Only one point out of 24 is off by 3.7 σ

CERN-PH-EP-2013-146

Angle γ (ϕ_3) measurements

• Used decay modes:

 $D(\rightarrow K^+\pi^-\pi^+\pi^-, \rightarrow K^-\pi^+\pi^+\pi^-)\pi^{\pm}$

Angle γ (ϕ_3) measurements

Combining all the decay modes

$$\gamma = 72.6^{\circ +9.1^{\circ}}_{-15.9^{\circ}}$$
 68% CL with LHCb 1 fb⁻¹ data

Cf. Pre-LHC average =
$$(68 + \frac{10}{-11})^{\circ}$$
 (PDG 2012)

• D-\overline{D} mixing confirmed
No-mixing excluded. The SM predictions have large uncertainties

x: mixing via mass-matrix

y: mixing via decay-matrix

CDF: 6.1 σ ; CDF Public Note 10990,

LHCb: 9.1 σ; Phys. Rev. Lett 110 (2013) 101802

Babar: 3.9 σ; Phys. Rev. Let 98 (2007) 211802

Belle: 2.0 σ; Phys. Rev. Lett 96 (2006) 151801

- D-\overline{D} mixing confirmed No-mixing excluded.
- CP violation in D decay amplitudes

$$\Delta A_{\mathrm{CP}} = A_{\mathrm{CP}}(\mathrm{D} {\longrightarrow} \mathrm{K}^+\mathrm{K}^-) - A_{\mathrm{CP}}(\mathrm{D} {\longrightarrow} \pi^+\pi^-)$$

- D-\overline{D} mixing confirmed No-mixing excluded.
- CP violation in D decay amplitudes $\Delta A_{\rm CP} = A_{\rm CP}({\rm D}{\to}{\rm K}^+{\rm K}^-) A_{\rm CP}({\rm D}{\to}\pi^+\pi^-)$ naïve SM expectation: $A_{\rm CP}({\rm K}^+{\rm K}^-)$ and $A_{\rm CP}(\pi^+\pi^-)$ have opposite signs and expected to be small, $\leq 10^{-3}$

• Clean D signal with LHCb

- Charm quarks produced at the pp primary vertex
 - − D*± from the primary vertex
 - Initial flavour tag with D*+→D⁰π⁺ and D*-→ \overline{D}^0 π⁻ "slow pion tag"
 - Utilised first

first $D^{*0} \rightarrow \pi^+ D^0$ K^- pp primary vertex $D^0 p$ pointing to the primary vertex

- Charm quarks from the b-hadron decay vertex
 - D meson from semileptonic b-hadron decays vertex
 - initial flavour tag with $h_{\overline{b}} \rightarrow D^0 l^+ X$ and $h_b \rightarrow \overline{D}{}^0 l^- X$

- D-\overline{D} mixing confirmed No-mixing excluded.
- CP violation in D decay amplitudes

$$\Delta A_{\rm CP} = A_{\rm CP}(\mathrm{D} {\longrightarrow} \mathrm{K}^+\mathrm{K}^-) - A_{\rm CP}(\mathrm{D} {\longrightarrow} \pi^+\pi^-)$$

LHCb result with slow-pion tagged "D" from the prompt

D*± (0.6 fb⁻¹) generated an excitement

$$\Delta A_{\rm CP} = (-8.2 \pm 2.1 \pm 1.1) \times 10^{-3}$$
 PRL108.111602

followed by

CDF
$$(-6.2 \pm 2.1 \pm 1.0) \times 10^{-3}$$
 PRL109.111801

Belle
$$(-8.7 \pm 4.1 \pm 0.6) \times 10^{-3}$$
 arXiv:1212.1975

- D-\overline{D} mixing confirmed No-mixing excluded.
- CP violation in D decay amplitudes

$$\Delta A_{\rm CP} = A_{\rm CP}(\mathrm{D} {\longrightarrow} \mathrm{K}^+\mathrm{K}^-) - A_{\rm CP}(\mathrm{D} {\longrightarrow} \pi^+\pi^-)$$

LHCb result with slow-pion tagged "D" from the prompt

D*± (0.6 fb⁻¹) generated an excitement

$$\Delta A_{\rm CP} = (-8.2 \pm 2.1 \pm 1.1) \times 10^{-3}$$
 PRL108.111602

followed by

CDF
$$(-6.2 \pm 2.1 \pm 1.0) \times 10^{-3}$$
 PRL109.111801

Belle
$$(-8.7 \pm 4.1 \pm 0.6) \times 10^{-3}$$
 arXiv:1212.1975

The latest LHCb results with 1 fb^{-1} LHCb-CONF-2013-003 and PLB 723 (2013) 33

$$\Delta A_{\rm CP} = (-3.4 \pm 1.5 \pm 1.0) \times 10^{-3}$$
 slow-pion tag

$$\Delta A_{\rm CP} = (4.9 \pm 3.0 \pm 1.4) \times 10^{-3} \,\mu \text{ tagged from B} \rightarrow D^0 \mu^{+(-)} X$$

average =
$$(-1.5 \pm 1.6) \times 10^{-3}$$

- D-\overline{D} mixing confirmed No-mixing excluded.
- CP violation in D decay amplitudes

$$\Delta A_{\rm CP} = A_{\rm CP}({\rm D} \rightarrow {\rm K}^+{\rm K}^-) - A_{\rm CP}({\rm D} \rightarrow \pi^+\pi^-)$$

Inconclusive whether CPV is >>10⁻³ if ~10⁻³, could be within the SM

Some final states wit a photon

⇒to study the Lorentz structure in the electric penguin diagrams

There are more results not mentioned

- Many many c- and b-hadron decay modes first observed including B_c
- Spectroscopy c- and b-hadrons exotics (X, Y, Z, ...) mass and lifetime
- And non flavour physics
 parton density in the forward region
 QCD
 new particle production in the forward region
 :

Near future

- Analysis with 7-8 TeV full data set within the next years.
- At 13-14 TeV, further gain in statistics from higher b- \overline{b} cross section (\times ~2)
 - LHCb: ~four times increases in "effective" statistics by the end of 2017 compared with the 7-8 TeV full statistics
 - ATLAS and CMS: depends on how they can cope with higher luminosities (very much on the decay modes)
- More and more sophisticated analysis methods are being developed.
- Belle II will become online in ~2016
- LHCb Major upgrade during the 2018-2019 long-shutdown to boost the statistics by ≥10

Also important to remember

- Results will come from
 - the kaon system in rare decays $(K^+ \rightarrow \pi^+ \nu \nu)$ and CPV $(K_L \rightarrow \pi^0 \nu \nu)$
 - charge lepton violating μ decays; \rightarrow 3e, \rightarrow e γ , μ -e conversion and, and τ decays, \rightarrow 3 μ , \rightarrow $\mu\gamma$, \rightarrow e γ
 - Flavour conserving quantities such as neutron electric dipole moment and $(g-2)_{\mu}$
- i.e. flavour should be considered more globally.
- Accurate Standard Model predictions are essential in the precision measurements. Strong interactions are still the most problematic issue in many measurements ⇒ help from our theory friends are always needed!
- By the way, axions have not been discovered so far, and $\theta_{\rm OCD}$ <10⁻¹⁰ appears to me as another "fine tuning"...

• There exists solid observations for physics beyond the Standard Model

• There exists solid observations for physics beyond the Standard Model
Neutrino oscillations

S-KAMIOKANDE

 There exists solid observations for physics beyond the Standard Model Neutrino oscillations
 Dark matter

S-KAMIOKANDE

Bullet Galaxy Clusters

• There exists solid observations for physics beyond the Standard Model

Neutrino oscillations

Dark matter

$$N_{\rm B} / N_{\gamma} = 10^{-10}$$

S-KAMIOKANDE

Bullet Galaxy Clusters

The Horn Antenna Bell Telephone Laboratory

• There exists solid observations for physics beyond the Standard Model

Neutrino oscillations

Dark matter

$$N_{\rm B} / N_{\rm \gamma} = 10^{-10}$$

S-KAMIOKANDE

Bullet Galaxy Clusters

The Horn Antenna Bell Telephone Laboratory

And there is (was?) strong theoretical anticipation that new

physics is just around the corner Summer Institute 2013, 17-23 August, Korea

- CP violation & rare decays made essential contributions to establish the flavour structure of the SM in the past
- Main motivation of flavour related measurements now is to search for new physics: with e.g. rare decays, CPV, etc.
- In B and D sector, LHC starts to lead the way. Possibility of large new physics contribution in the B_s sector has already been eliminated
- Despite of cosmological "proof" for new physics as well as the neutrino mass, and many clever theoretical works, we have little idea where the energy threshold of new physics.
- We need to observe a clear sign of new physics, directly or indirectly, in particle physics, to know this. And I am afraid there is no obvious road for a discovery

- There are many motivated people working in the broad field. Since there is no obvious road, pursuits must be carried away as wide as possible.
- And the exploitation at LHC has just started!

In any case,

Exciting time is ahead of us all.

My standard joke of the past years...

My hope, expectation and possible realities matrix for 2014 at LHC

ATLAS CMS high $p_{\rm T}$ physics	BSM	Only SM	BSM	
LHCb flavour physics	Only SM	BSM	BSM	
Particle Physics	\odot	\odot	\odot	

Oh, no more space left...

Particle Physics in LHC Era, T. Nakada XXVIII Encontro Nacional de Física de Partículas e Campos, Brazil, 2007

62/63