Lecture II

Constraining the structure of RG flows in 4 D

conceivable RG flows

but all known examples asymptote to a CFT fixed point

- free (QED, massless QCD)
- strongly coupled (Supersymmetry)
- trivial (real QCD)

In particular: there are no known SFT asymptotics !

Scale invariance

versus

Conformal Invariance

Wess 1960
Polchinski 1988

Geometric picture

dilations $\quad x^{\mu} \rightarrow \tilde{x}^{\mu}=k x^{\mu}$

$$
(d \tilde{x})^{2}=k^{2}(d x)^{2}
$$

conformal $\quad x^{\mu} \rightarrow \tilde{x}^{\mu}=\frac{x^{\mu}+b^{\mu} x^{2}}{1+b^{2} x^{2}+2 b \cdot x}$

$$
(d \tilde{x})^{2}=\frac{1}{\left(1+b^{2} x^{2}+2 b \cdot x\right)^{2}}(d x)^{2}
$$

Conformal Group:

$$
x \rightarrow \tilde{x}(x) \quad \text { such that } \quad \eta_{\mu \nu} d \tilde{x}^{\mu} d \tilde{x}^{\nu}=F(x) \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

In $\mathrm{D}>2$ the group is $\mathrm{O}(\mathrm{D}, 2)$

- Poincaré
- dilations
- special conformal

In $\mathrm{D}=2$ the symmetry algebra is generated by the infinite set of harmonic functions

In principle one could have just a scale invariant field theory (SFT) with Poincaré \times dilations symmetry

Scale transformation

Noether current

$$
\Phi_{a}(x) \rightarrow \Phi_{b}(k x) D_{b a}(k)
$$

virial current

$$
S^{\mu}=T^{\mu}{ }_{\nu} x^{\nu}+V^{\mu}
$$

$$
\partial_{\mu} S^{\mu}=0
$$

$$
T_{\mu}^{\mu}=-\partial_{\mu} V^{\mu} \neq 0
$$

- If $V_{\mu}=\partial^{\nu} L_{\mu \nu}$
- improvement exists

$$
\begin{aligned}
& T_{\mu \nu} \rightarrow \Theta_{\mu \nu} \quad S^{\mu} \rightarrow \tilde{S}^{\mu}=\Theta^{\mu}{ }_{\nu} x^{\nu} \\
& \Theta^{\mu}{ }_{\mu}=0
\end{aligned}
$$

$$
\Theta^{\mu}{ }_{\mu}=0
$$

```
conformal
symmetry
as a 'bonus'
```

$$
K_{\nu}^{\mu}=2 x_{\nu} x^{\rho} \Theta_{\rho}^{\mu}-x^{2} \Theta_{\nu}^{\mu}
$$

$$
\partial_{\mu} K_{\nu}^{\mu}=2 x_{\nu} \Theta_{\mu}^{\mu}=0
$$

- SFT examples, if any, necessarily entail quantum effects
$V_{\mu} \equiv$ genuine non-conserved current with scaling dimension exactly equal to 3 even including quantum effects
- Often, there simply doesn't exist a candidate for
V_{μ}
Ex.: axial current in massless (S)QCD excluded by parity selection rule
- But in general?

Exploring the structure of QFT by turning on an external metric

- Irreversibility of CFT-to-CFT RG flows: a-theorem
- Ruling out non-CFT asymptotics in perturbation theory
- Towards a non-perturbative result

RG flow describes the change of the dynamics under a dilation \equiv change of the action under a dilation

Whenever we have some explicitly broken symmetry it proves useful to

- formally restore it by promoting couplings to sources transforming non trivially
- gauge it by adding the suitable gauge field

We shall play various related games

A.
$\eta_{\mu \nu}, \quad \lambda_{i}$
\longrightarrow
$g_{\mu \nu}(x), \quad \lambda_{i}(x) \quad+$ Weyl
symmetry
B. $\quad \lambda_{i}=\mathrm{const}$

$$
\begin{aligned}
& \eta_{\mu \nu} \longrightarrow e^{-2 \tau} \eta_{\mu \nu} \\
& e^{-\tau} \equiv \Omega \equiv 1+\varphi
\end{aligned}
$$

background dilaton field

Geometric picture

dilations $\quad x^{\mu} \rightarrow \tilde{x}^{\mu}=k x^{\mu}$

$$
(d \tilde{x})^{2}=k^{2}(d x)^{2}
$$

conformal $\quad x^{\mu} \rightarrow \tilde{x}^{\mu}=\frac{x^{\mu}+b^{\mu} x^{2}}{1+b^{2} x^{2}+2 b \cdot x}$

$$
(d \tilde{x})^{2}=\frac{1}{\left(1+b^{2} x^{2}+2 b \cdot x\right)^{2}}(d x)^{2}
$$

QFT in a gravitational background

Weyl Symmetry

$$
\begin{aligned}
g_{\mu \nu}(x) & \rightarrow e^{-2 \sigma(x)} g_{\mu \nu} \\
\Phi_{a}(x) & \rightarrow e^{-k_{a} \sigma(x)} \Phi_{a}(x)
\end{aligned}
$$

$\mathrm{O}(\mathrm{D}, 2)=$ subgroup of Weyl \times Diffs that leaves $\eta_{\mu \nu}$ invariant

Converse is also true (at classical level)

$$
\left.\mathcal{L}_{\text {flat }}=\frac{1}{2}(\partial \varphi)^{2} \quad T_{\mu \nu}=\partial_{\mu} \varphi \partial_{\nu} \varphi-\frac{\eta_{\mu \nu}}{2}(\partial \varphi)^{2}\right)
$$

Ex.: free massless scalar field

$$
\begin{aligned}
\mathcal{L}_{\text {flat }}=\frac{1}{2}(\partial \varphi)^{2} \quad T_{\mu \nu} & =\partial_{\mu} \varphi \partial_{\nu} \varphi-\frac{\eta_{\mu \nu}}{2}(\partial \varphi)^{2} \\
T_{\mu}^{\mu} & =-(\partial \varphi)^{2} \neq 0 \\
\Theta_{\mu \nu} & =T_{\mu \nu}-\frac{1}{6}\left(\partial_{\mu} \partial_{\nu}-\eta_{\mu \nu} \square\right) \varphi^{2} \\
\Theta_{\mu}^{\mu} & =0
\end{aligned}
$$

Ex.: free massless scalar field

$$
\begin{aligned}
& \mathcal{L}_{\text {flat }}=\frac{1}{2}(\partial \varphi)^{2} \quad T_{\mu \nu}=\partial_{\mu} \varphi \partial_{\nu} \varphi-\frac{\eta_{\mu \nu}}{2}(\partial \varphi)^{2} \\
& T_{\mu}^{\mu}=-(\partial \varphi)^{2} \neq 0 \\
& \Theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{6}\left(\partial_{\mu} \partial_{\nu}-\eta_{\mu \nu} \square\right) \varphi^{2} \\
& \Theta_{\mu}^{\mu}=0 \\
& \mathcal{L}_{\text {curved }}=\sqrt{g} \frac{1}{2}\left[(\partial \varphi)^{2}+\frac{1}{6} R \varphi^{2}\right]=\frac{1}{6} \sqrt{\hat{g}} R(\hat{g}) \\
& \hat{g}_{\mu \nu} \equiv \varphi^{2} g_{\mu \nu} \quad \rightarrow e^{\sigma} \varphi \\
& g_{\mu \nu} \rightarrow e^{-2 \sigma} g_{\mu \nu} \quad \text { Weyl symmetry } \\
& \text { manifest }
\end{aligned}
$$

Weyl symm: $\quad \int \sigma(x)\left(2 g^{\mu \nu} \frac{\delta S}{\delta g^{\mu \nu}(x)}+k_{a} \Phi_{a} \frac{\delta S}{\delta \Phi_{a}(x)}\right)=0$

$$
\begin{gathered}
\sigma(x) \text { arbitrary } \Phi_{a} \text { on-shell } \\
T_{\mu}^{\mu} \equiv g^{\mu \nu} \frac{\delta S}{\delta g^{\mu \nu}(x)}=0
\end{gathered}
$$

With only global Weyl, $\square \sigma=$ constant, we would instead deduce

$$
\int T_{\mu}^{\mu}=0 \quad \longrightarrow \quad T_{\mu}^{\mu}=\partial^{\mu} V_{\mu}
$$

QFT in gravity background

\downarrow quantum effective action

$$
e^{i W\left[g_{\mu \nu}\right]}=\int D[\Phi] e^{i S[g, \Phi]}
$$

- need regulation
- diff invariant
- finite by adding suitable local counterterms

In general the introduction of a regulator in curved background breaks explicitly Weyl invariance even when flat space theory is conformally invariant
$\delta_{\sigma} \equiv \int d^{4} x 2 \sigma(x) g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}$

In ordinary QFT $\quad \delta_{\sigma} W=$ non-local

In CFT

$$
\delta_{\sigma} W=\int \sigma(x) \sqrt{g} \mathcal{A}(x)=\quad \begin{gathered}
\text { Weyl Anomaly } \\
\text { (local!) }
\end{gathered}
$$

also written as $\quad\langle T\rangle \equiv\left\langle T_{\mu}^{\mu}\right\rangle=\mathcal{A}(x)$

Christensen, Duff' 74

The structure of the Weyl anomaly in a CFT
$\mathcal{A}(x)$ is a scalar function of the metric
in general

$$
\mathcal{A}(x)=a E_{4}-b R^{2}-c W^{2}-d \square R
$$

$$
E_{4}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2}
$$

$$
W^{2}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-2 R^{\mu \nu} R_{\mu \nu}+\frac{1}{3} R^{2}
$$

$\int \sigma(x) \sqrt{g}\left(-d \square R+e \Lambda^{2} R+f \Lambda^{4}\right)=\delta_{\sigma} \int(-1) \sqrt{g}\left(\frac{d}{12} R^{2}+\frac{e}{2} \Lambda^{2} R+\frac{f}{4} \Lambda^{4}\right)$
the last three terms can be written as variation of local functional
they can be eliminated by a choice of counterterms
$\mathcal{A}(x)$ is a scalar function of the metric
in general

$$
\begin{aligned}
\mathcal{A}(x) & =a E_{4}-b R^{2}-c W^{2}-d \square R+e \Lambda^{2} R+f \Lambda^{4} \\
E_{4} & =R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2} \\
W^{2} & =R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-2 R^{\mu \nu} R_{\mu \nu}+\frac{1}{3} R^{2}
\end{aligned}
$$

$$
\int \sigma(x) \sqrt{g}\left(-d \square R+e \Lambda^{2} R+f \Lambda^{4}\right)=\delta_{\sigma} \int(-1) \sqrt{g}\left(\frac{d}{12} R^{2}+\frac{e}{2} \Lambda^{2} R+\frac{f}{4} \Lambda^{4}\right)
$$

the last three terms can be written as variation of local functional
they can be eliminated by a choice of counterterms
$\mathcal{A}(x)$ is a scalar function of the metric
in general

$$
\mathcal{A}(x)=a E_{4}-b R^{2}-c W^{2}-d \square R+e \Lambda^{2} R+f \Lambda^{4}
$$

$$
E_{4}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2}
$$

$$
W^{2}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-2 R^{\mu \nu} R_{\mu \nu}+\frac{1}{3} R^{2}
$$

$\int \sigma(x) \sqrt{g}\left(-d \square R+e \Lambda^{2} R+f \Lambda^{4}\right)=\delta_{\sigma} \int(-1) \sqrt{g}\left(\frac{d}{12} R^{2}+\frac{e}{2} \Lambda^{2} R+\frac{f}{4} \Lambda^{4}\right)$
the last three terms can be written as variation of local functional
they can be eliminated by a choice of counterterms
$\mathcal{A}(x)$ is a scalar function of the metric
in general

$$
\mathcal{A}(x)=a E_{4}-b R^{2}-c W^{2}-d \square R
$$

$$
E_{4}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2}
$$

$$
W^{2}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-2 R^{\mu \nu} R_{\mu \nu}+\frac{1}{3} R^{2}
$$

$$
\int \sigma(x) \sqrt{g}\left(-d \square R+e \Lambda^{2} R+f \Lambda^{4}\right)=\delta_{\sigma} \int(-1) \sqrt{g}\left(\frac{d}{12} R^{2}+\frac{e}{2} \Lambda^{2} R+\frac{f}{4} \Lambda^{4}\right)
$$

the last three terms can be written as variation of local functional
they can be eliminated by a choice of counterterms

Wess-Zumino consistency condition

$$
\delta_{\sigma} W=\int \sigma(x) \sqrt{g} \mathcal{A}(x)
$$

Weyl symmetry is abelian

$$
\begin{gathered}
{\left[\delta_{\sigma_{2}}, \delta_{\sigma_{1}}\right] W=\delta_{\sigma_{2}}\left(\int d^{4} x_{1} \sigma_{1} \sqrt{g} \mathcal{A}\right)-\delta_{\sigma_{1}}\left(\int d^{4} x_{2} \sigma_{2} \sqrt{g} \mathcal{A}\right)=0} \\
\mathcal{A}(x)=a E_{4}-b R^{2}-c W^{2} \longrightarrow a E_{4}-c W^{2}
\end{gathered}
$$

Wess-Zumino consistency condition

$$
\delta_{\sigma} W=\int \sigma(x) \sqrt{g} \mathcal{A}(x)
$$

Weyl symmetry is abelian

$$
\begin{gathered}
{\left[\delta_{\sigma_{2}}, \delta_{\sigma_{1}}\right] W=\delta_{\sigma_{2}}\left(\int d^{4} x_{1} \sigma_{1} \sqrt{g} \mathcal{A}\right)-\delta_{\sigma_{1}}\left(\int d^{4} x_{2} \sigma_{2} \sqrt{g} \mathcal{A}\right)=0} \\
\mathcal{A}(x)=a E_{4}-b R^{2}-c W^{2} \longrightarrow a E_{4}-c W^{2}
\end{gathered}
$$

Easy to check using

$$
\begin{aligned}
\delta \sqrt{g} & =-4 \sigma \sqrt{g} \\
\delta \square & =2 \sigma \square-2 \nabla_{\mu} \sigma \nabla^{\mu} \\
\delta R & =2 \sigma R+6 \square \sigma \\
\delta E_{4} & =4 \sigma E_{4}-8 G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \sigma \\
\delta W^{2} & =4 \sigma W^{2} \\
\delta G_{\mu \nu} & =2\left(\nabla_{\mu} \nabla_{\nu}-g_{\mu \nu} \square\right) \sigma
\end{aligned}
$$

\downarrow In general CFT

$$
\begin{aligned}
\left\langle T_{\mu \nu}(x) T_{\rho \sigma}(0)\right\rangle & =\frac{c}{x^{8}} I_{\mu \nu \rho \sigma}(x) \\
\left\langle T_{\mu \nu}(x) T_{\rho \sigma}(0) T_{\gamma \delta}(y)\right\rangle & =c C_{\mu \nu \rho \sigma \gamma \delta}(x, y)+a A_{\mu \nu \rho \sigma \gamma \delta}(x, y)
\end{aligned}
$$

Stanev '88

Osborn, Petkou '94
\uparrow In a free field theory one has
Christensen, Duff '79

$$
\begin{aligned}
a & =\frac{1}{5760 \pi^{2}}\left(n_{s}+\frac{11}{2} n_{f}+62 n_{v}\right) \\
c & =\frac{1}{5760 \pi^{2}}\left(3 n_{s}+9 n_{f}+36 n_{v}\right)
\end{aligned}
$$

both a and c are a weighted measure of the number of degrees of freedom

Cardy's Conjecture (1988) : a decreases monotonically along the RG flow

$$
a_{U V}>a_{I R}
$$

In 2D there was already Zamolodchikov's c-theorem (i986) stating the monotonicity of the unique coefficient in the 2 D Weyl anomaly

$$
\delta_{\sigma} W=\int d^{2} x \sqrt{g} c R(g) \equiv \int d^{2} x \sqrt{g} c E_{2}(g)
$$

Proof of Cardy's Conjecture: the a-theorem

Komargodski and Schwimmer 2011

Consider now putting this system in an extermal metric

$\Delta \mathcal{L}_{U V} \equiv$ metric (curvature) dependent counterterms needed to define a renormalized quantum action W[g]
$\Delta \mathcal{L}_{I R} \equiv$ metric dependent terms associated with positive powers of m

local scalar functions of dimension ≤ 4

In the classification of these terms it is crucial to consider what happens for the case of a conformally flat background metric

$$
\hat{g}_{\mu \nu}=\Omega(x)^{2} \eta_{\mu \nu}
$$

Counterterms

$$
d>4 \text { in sensible theories }
$$

$$
\text { I. } \begin{array}{ccc}
\sqrt{\hat{g}} R \mathcal{O} \quad d_{\mathcal{O}} \leq 2 & \sqrt{\hat{g}} \nabla_{\mu} R J^{\mu} \quad \sqrt{\hat{g}} R_{\mu \nu} J^{\mu \nu}
\end{array}
$$

$\begin{array}{llllll}\text { II. } & \sqrt{\hat{g}} & \sqrt{\hat{g}} R & \sqrt{\hat{g}} R^{2} & \sqrt{\hat{g}} E_{4} & \sqrt{\hat{g}} W^{2}\end{array}$

Counterterms

$$
d>4 \text { in sensible theories }
$$

$$
\text { I. } \begin{array}{ccc}
\sqrt{\hat{g}} R \mathcal{O} & d_{\mathcal{O}} \leq 2 & \sqrt{\hat{g}} \nabla_{\mu} R J^{\mu}-\sqrt{\hat{g}} R_{\mu \nu} J^{\mu \nu} \\
\text { irrelevant }
\end{array}
$$

$\begin{array}{llllll}\text { II. } & \sqrt{\hat{g}} & \sqrt{\hat{g}} R & \sqrt{\hat{g}} R^{2} & \sqrt{\hat{g}} E_{4} & \sqrt{\hat{g}} W^{2}\end{array}$

Counterterms
$d>4$ in sensible theories

$$
\text { I. } \quad \begin{array}{ll}
& \sqrt{g} R \mathcal{O} \quad d_{\mathcal{O}} \leq 2 \\
& \downarrow \\
& \Omega \square \Omega \mathcal{O}
\end{array}
$$

II. $\sqrt{\hat{g}}$
$\sqrt{\hat{g}} R$
\downarrow
$\sqrt{\hat{g}} R^{2}$
$\sqrt{\hat{g}} E_{4} \quad \sqrt{\hat{g}} W^{2}$

0
\downarrow
0

Counterterms

$d>4$ in sensible theories

$$
\begin{array}{ccc}
\text { I. } & \sqrt{\hat{g}} R \mathcal{O} & d_{\mathcal{O}} \leq 2
\end{array} \quad \sqrt{\hat{g}} \nabla_{\mu} R J^{\mu}-\sqrt{\hat{g}} R_{\mu \nu} J^{\mu \nu}
$$

II. $\begin{array}{rc} & \sqrt{\hat{g}} \\ & \downarrow \\ & \Omega^{4}\end{array}$
$\sqrt{\hat{g}} R$
\downarrow
$\Omega \square \Omega$

$$
\Omega^{-2}(\square \Omega)^{2}
$$

$\sqrt{\hat{g}} E_{4} \quad \sqrt{\hat{g}} W^{2}$

0
\downarrow
0

Counterterms

$d>4$ in sensible theories

$$
\begin{array}{ccc}
\text { I. } & \sqrt{\hat{g}} R \mathcal{O} & d_{\mathcal{O}} \leq 2
\end{array} \quad \sqrt{\hat{g}} \nabla_{\mu} R J^{\mu}-\sqrt{\hat{g}} R_{\mu \nu} J^{\mu \nu}
$$

On shell dilaton : $\quad \square \Omega=0$

Counterterms

$d>4$ in sensible theories
I. $\begin{array}{cc}\sqrt{\hat{g}} R \mathcal{O} & d_{\mathcal{O}} \leq 2\end{array} \quad \sqrt{\hat{g}} \nabla_{\mu} R J^{\mu}-\sqrt{\hat{g}} R_{\mu \nu} J^{\mu \nu}$

On shell dilaton : $\quad \square \Omega=0$

$$
\left.W\right|_{\Omega: \square \Omega=0}=W\left[\Omega, \lambda_{Q F T}, \Lambda_{c c}\right]
$$

consider from here on

$$
\left.W[\Omega] \equiv W[\Omega]\right|_{\square \Omega=0}
$$

$$
\left.\frac{\delta}{\delta \Omega\left(x_{1}\right)} \cdots \frac{\delta}{\delta \Omega\left(x_{n}\right)} W\right|_{\Omega=1}=\mathcal{M}\left(x_{1}, \ldots, x_{n}\right)
$$

\mathcal{M} can be interpreted as the n-dilaton scattering amplitude

QCD analogy

Effective QCD action in background photon field : $W\left[A_{\mu}\right]$
$\frac{\delta}{\delta A_{\mu_{1}}\left(x_{1}\right)} \cdots \frac{\delta}{\delta A_{\mu_{n}}\left(x_{n}\right)} W=$ QCD mediated n -photon amplitude

The analogue QFT mediated dilaton-by-dilaton scattering

affords a remarkable insight into the structure of our QFT

Like for all on-shell n-point dilaton amplitudes the only renormalization needed to define this amplitude concerns a constant term associated with the cosmological constant

$$
\mathcal{M} \equiv \mathcal{M}\left(\lambda_{Q F T}, \Lambda_{c c}\right)
$$

4-point amplitude

$$
\hat{g}_{\mu \nu}=\Omega(x)^{2} \eta_{\mu \nu}
$$

$$
\frac{\delta}{\delta \Omega}=\frac{1}{\Omega} \frac{\delta}{\delta \ln \Omega}
$$

$$
-\frac{\delta}{\delta \ln \Omega} W=T_{\mu}^{\mu} \equiv T
$$

$$
\begin{aligned}
\mathcal{M}\left(p_{1}, \ldots, p_{4}\right)=\frac{\delta^{4} W}{\delta \Omega\left(p_{1}\right) \cdots \delta \Omega\left(p_{4}\right)}=\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T\left(p_{4}\right)\right\rangle & +\left\langle T\left(p_{1}+p_{2}\right) T\left(p_{3}\right) T\left(p_{4}\right)\right\rangle+\text { permutations } \\
& +\left\langle T\left(p_{1}+p_{2}\right) T\left(p_{3}+p_{4}\right)\right\rangle+\text { permutations } \\
& +\left\langle T\left(p_{1}+p_{2}+p_{3}\right) T\left(p_{4}\right)\right\rangle+\text { permutations }
\end{aligned}
$$

$$
\mathcal{M}\left(p_{1}, \ldots, p_{4}\right) \equiv(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right) A(s, t)
$$

+ permutations

+ permutations

permutations

In a CFT $W[\Omega]$ is local and fully determined by the Weyl anomaly up to cosmological constant term

neglecting momentarily CC term

$$
W_{C F T}\left[\Omega^{2} g_{\mu \nu}\right]=W_{C F T}\left[g_{\mu \nu}\right]-S_{\mathrm{WZ}}\left[g_{\mu \nu}, \Omega ; a, c\right]
$$

Cappelli, Coste 1988
Tomboulis 1990
Schwimmer, Theisen '11
$S_{\mathrm{W} Z}\left[g_{\mu \nu}, \Omega ; a, c\right]=\int d^{4} x \sqrt{-g}\left\{a\left[\ln \Omega E_{4}(g)\right.\right.$

$$
\begin{aligned}
& \quad-4\left(R^{\mu \nu}(g)-\frac{1}{2} g^{\mu \nu} R(g)\right) \Omega^{-2} \partial_{\mu} \Omega \partial_{\nu} \Omega \\
& \left.-4 \Omega^{-3}(\partial \Omega)^{2} \square \Omega+2 \Omega^{-4}(\partial \Omega)^{4}\right] \\
& -c \ln \Omega
\end{aligned}
$$

$$
\begin{array}{ll}
g_{\mu \nu}=\eta_{\mu \nu} \\
\square \Omega & =0
\end{array} \quad W_{C F T}[\Omega] \quad \longrightarrow \quad-2 a \Omega^{-4}(\partial \Omega)^{2}(\partial \Omega)^{2}+\frac{\Lambda}{4!} \Omega^{4}
$$

$$
A(s, t)=-4 a\left[s^{2}+t^{2}+(s+t)^{2}\right]+\Lambda
$$

this basic result leads to a simple proof of the a-theorem
Komargodski, Schwimmer '11

$\mathrm{CFT}_{\mathrm{UV}}$

$\mathrm{CFT}_{\mathrm{Uv}}$

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{U V}+\sum_{i} c_{i} m^{4-d_{i}} \mathcal{O}_{i} \\
d_{i}<4 \\
\mathcal{L}=\mathcal{L}_{I R}+\sum_{a} b_{a} \frac{1}{m^{d_{a}-4}} \tilde{\mathcal{O}}_{a} \\
d_{a}>4
\end{gathered}
$$

$\mathrm{CFT}_{\mathrm{UV}}$

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{U V}+\sum_{i} c_{i} m^{4-d_{i}} \mathcal{O}_{i} \\
d_{i}<4
\end{gathered}
$$

$$
A(s, 0)=-8 a_{U V} s^{2}\left[1+\left(\frac{m}{\sqrt{s}}\right)^{\#}\right]+\Lambda_{c c}^{U V}
$$

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{I R}+\sum_{a} b_{a} \frac{1}{m^{d_{a}-4}} \tilde{\mathcal{O}}_{a} \\
d_{a}>4
\end{gathered}
$$

$$
A(s, 0)=-8 a_{I R} s^{2}\left[1+\left(\frac{\sqrt{s}}{m}\right)^{\#}\right]+\Lambda_{c c}^{I R}
$$

$\mathrm{CFT}_{\mathrm{IR}}$

Can relate UV to IR via dispersive argument

Using

- $A(s) \equiv A(s, 0) \quad$ is analitic with cut on real s axis
-crossing $A(s)=A(-s) \quad(t=0, s \leftrightarrow u \quad \equiv \quad s \leftrightarrow-s)$
-‘reality' $\quad A^{*}(s)=A\left(s^{*}\right)$
- optical theorem

$$
\begin{aligned}
& -i[A(s+i \epsilon)-A(-s+i \epsilon)] \\
& =\operatorname{Im} A(s+i \epsilon)=s \sigma(\Omega \Omega \rightarrow \mathrm{QFT})
\end{aligned}
$$

$$
\begin{aligned}
I_{I R} & =4 a_{I R} \quad \quad \text { CC term drops }! \\
I_{U V} & =-4 a_{U V} \\
I_{R G} & =\frac{1}{\pi} \int \frac{\operatorname{Im} A}{s^{3}}=\frac{1}{\pi} \int \frac{\sigma(\Omega \Omega \rightarrow \mathrm{QFT})}{s^{2}}>0 \\
a_{I R} & =a_{U V}-\frac{1}{4} I_{R G}<a_{U V}
\end{aligned}
$$

- $\mathrm{I}_{\mathrm{RG}}=\mathrm{a}_{\mathrm{UV}}-\mathrm{a}_{\mathrm{IR}} \quad$ is nicely finite in CFT-to-CFT flows
- can check directly that convergence of I_{RG} in both UV and IR corresponds to convergence of RG flow to a CFT
- It had to be so, since $d^{2} A / d s^{2}$ is finite; just a function of the renormalized QFT couplings
- Finiteness of I_{RG}
constraint on QFT asymptotics
a-theorem implies the deep notion of irreversibility of RG flow

however I do not know of insightful applications in particle physics

Does a-theorem constrains phases of $\mathrm{N}_{\mathrm{C}}, \mathrm{N}_{\mathrm{F}} \mathrm{QCD}$?

$$
a \propto N_{S}+11 N_{F}+62 N_{V}
$$

UV: quarks and gluons

$$
a_{U V} \propto 11 N_{F}+62\left(N_{C}^{2}-1\right)
$$

IR: assume chiral symmetry breaking vacuum and mass gap

$$
N_{F}^{2}-1 \quad \text { NG-bosons } \quad a_{I R} \propto N_{F}^{2}-1
$$

easy to check that

$$
a_{I R}<a_{U V}
$$

for any asymptotically free choice of N_{F} and N_{C}

