Probing exotic Higgs sectors from the enhancement of the hVV coupling

Kei Yagyu (National Central Univ.)

Shinya Kanemura, Mariko Kikuchi, and K.Y., PRD88, 015020 Cheng-Wei Chiang, An-Li Kuo, and K.Y., arXiv: 1307.7526

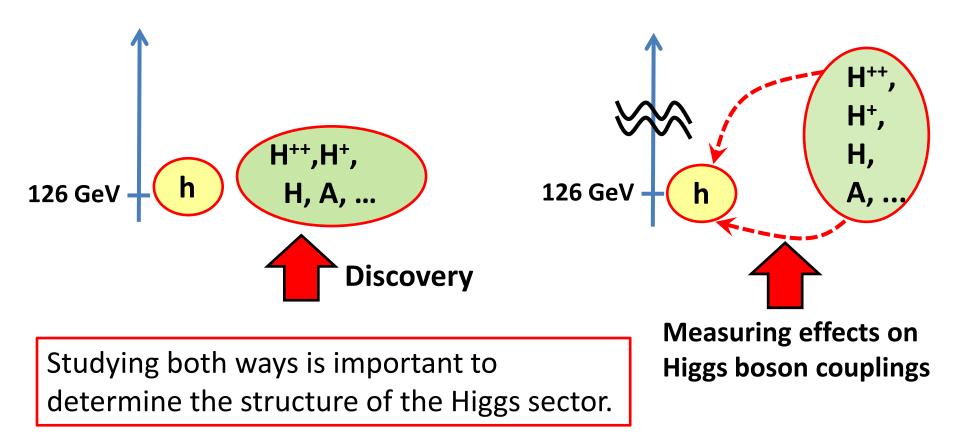
> Summer Institute 2013 Jirisan National Park, Korea, Aug. 19th

Overview

- An observed new particle with 126 GeV at the LHC is consistent with the SM Higgs boson.
- Discovery of the SM-like Higgs boson does not necessarily mean that the SM is correct.
- The SM-like Higgs boson can also be explained in extended Higgs sectors.
- Extended Higgs sectors are often introduced in new physics models.

Determination of the true Higgs sector = Knowing new physics models

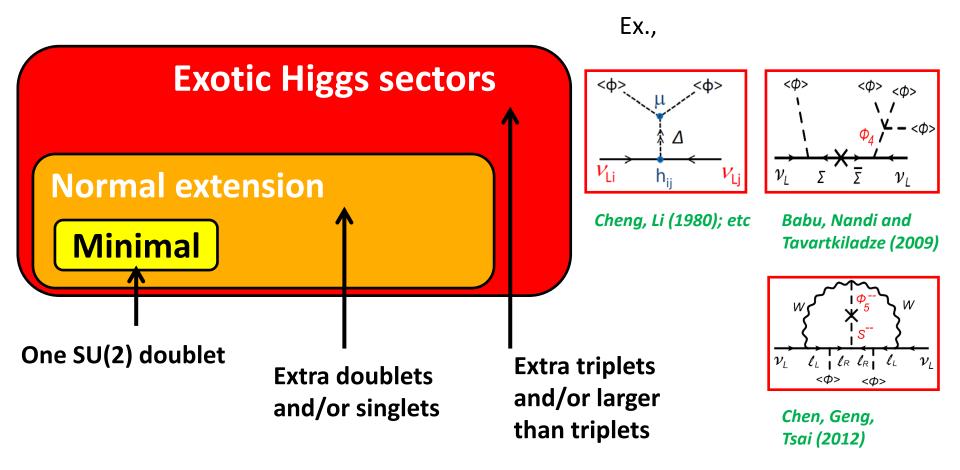
How can we determine the structure of the true Higgs sector?


Testing extended Higgs sectors at colliders

Direct way

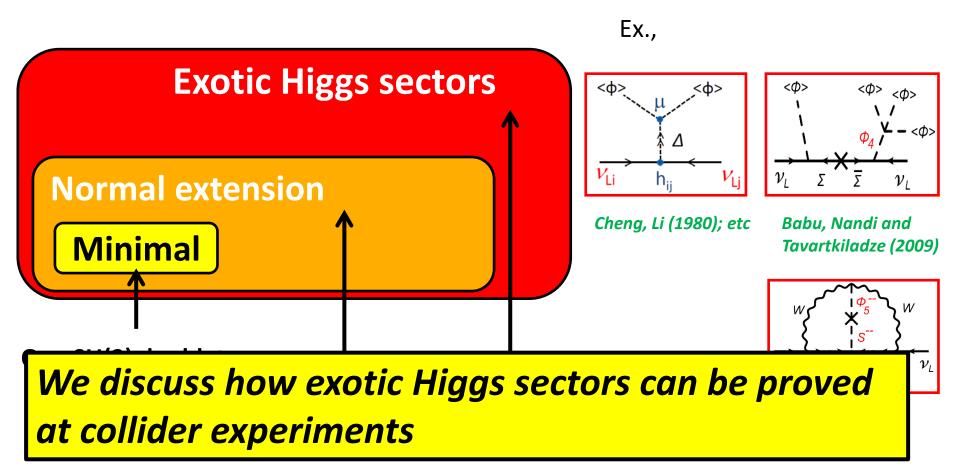
 Discovery of extra Higgs bosons

2. Indirect way


-Precise measurements of the Higgs coupling constants.

Exotic Higgs sectors

□ In this talk, we focus on the Higgs sector with *exotic scalar fields*.


Exotic scalar fields are often introduced in neutrino mass models.

Exotic Higgs sectors

□ In this talk, we focus on the Higgs sector with *exotic scalar fields*.

Exotic scalar fields are often introduced in neutrino mass models.

Higgs boson couplings with gauge bosons

□ In extended Higgs sectors, there is a sum rule for VEVs

$$v_{\rm SM}^2 = \sum_i 2[T_i(T_i + 1) - Y_i^2]v_i^2$$

$$Ex., 2[T(T+1)-Y^2] = \begin{cases} 1 \text{ for } T=1/2, Y=1/2 \\ 2 \text{ for } T=1, Y=1 \text{ (complex triplet)} \\ 4 \text{ for } T=1, Y=0 \text{ (real triplet)} \\ 16 \text{ for } T=3, Y=2 \text{ (7-plet Higgs), etc...} \\ Hisano, Tusmura (2013), Kanemura, Kikuchi, KY (2013) \end{cases}$$

V . hypercharge

□ If the factor 2[T(T+1)-Y^2] is larger than 1, it causes an enhanced hWW coupling compared to the SM value.

□ The hZZ coupling can also be enhanced, if the factor **4Y^2** is larger than 1.

Higgs boson couplings with gauge bosons

□ In extended Higgs sectors, there is a sum rule for VEVs

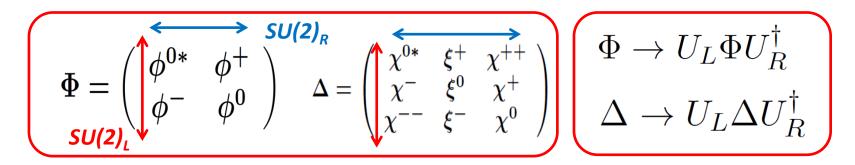
$$v_{\rm SM}^2 = \sum_i 2[T_i(T_i + 1) - Y_i^2]v_i^2$$

$$Ex., 2[T(T+1)-Y^2] = \begin{cases} 1 \text{ for } T=1/2, Y=1/2 \\ 2 \text{ for } T=1, Y=1 \text{ (complex triplet)} \\ 4 \text{ for } T=1, Y=0 \text{ (real triplet)} \\ 16 \text{ for } T=3, Y=2 \text{ (7-plet Higgs), etc...} \\ Hisano, Tusmura (2013), Kanemura, Kikuchi, KY (2013) \end{cases}$$

V . hypercharge

1.

□ If the factor 2[T(T+1)-Y^2] is larger than 1, it causes an enhanced hWW coupling compared to the SM value.


Measuring enhanced hVV couplings can be a probe of exotic Higgs sectors!

Georgi, Machacek (1985)

The Georgi-Machacek Model

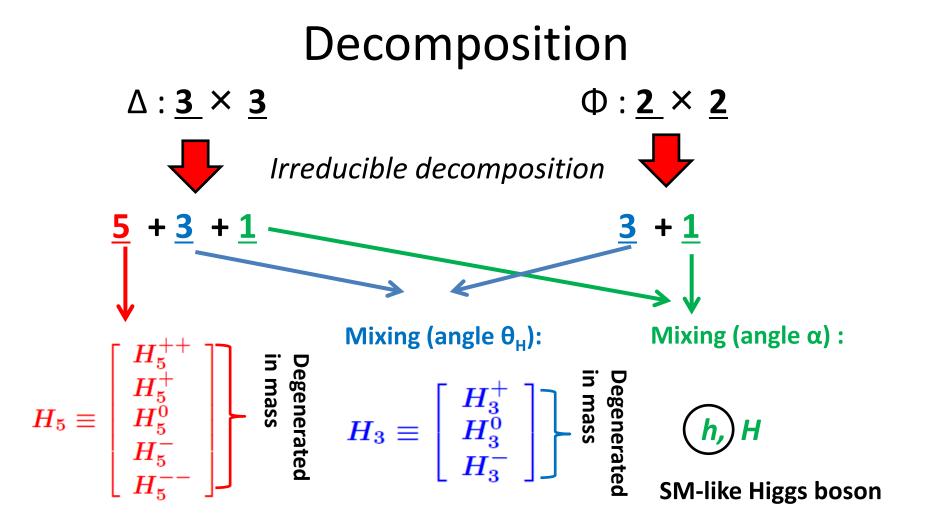
□ We focus on the Georgi-Machacek model as an example. Higgs sector → Higgs doublet ϕ + complex triplet χ + real triplet ξ

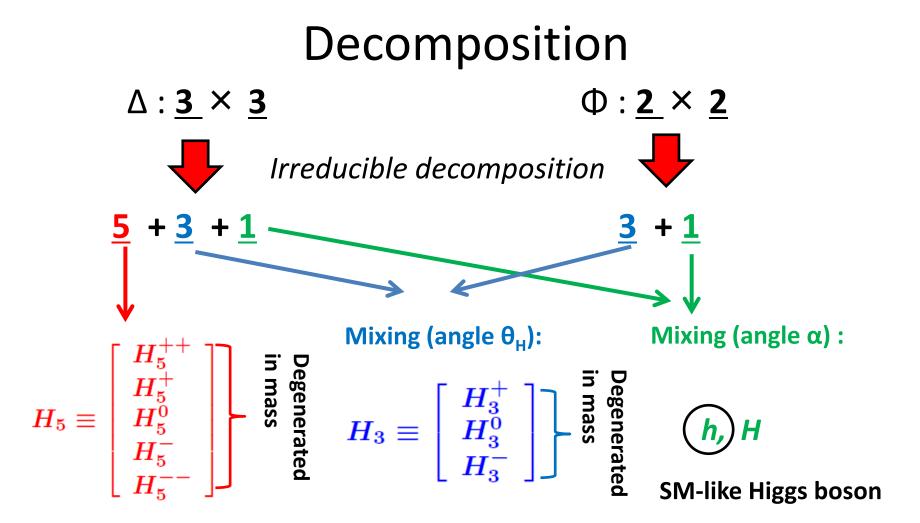
 \square SU(2)_L × SU(2)_R form:

 \Box If we take two triplet VEVs to be the same: $\langle \chi^0 \rangle = \langle \xi^0 \rangle = v\Delta$

Georgi, Machacek (1985)

The Georgi-Machacek Model

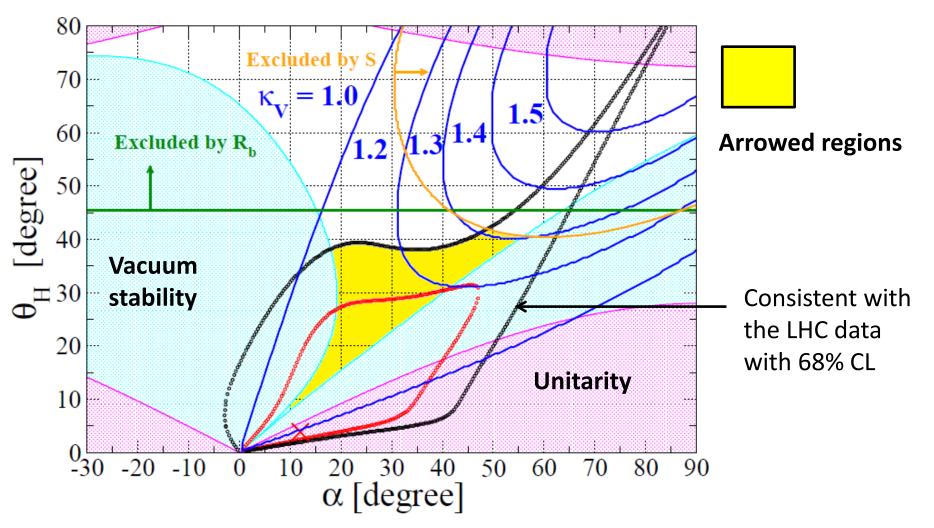

□ We focus on the Georgi-Machacek model as an example. Higgs sector → Higgs doublet ϕ + complex triplet χ + real triplet ξ


 \square SU(2)_L × SU(2)_R form:

$$egin{aligned} \langle \Phi
angle = \left(egin{aligned} v_{\phi} & 0 \ 0 & v_{\phi} \end{array}
ight) & \langle \Delta
angle = \left(egin{aligned} v_{\Delta} & 0 & 0 \ 0 & v_{\Delta} & 0 \ 0 & 0 & v_{\Delta} \end{array}
ight) & egin{aligned} \langle \Phi
angle
ightarrow U_V \langle \Phi
angle U_V^\dagger \ \langle \Delta
angle
ightarrow U_V \langle \Delta
angle U_V^\dagger \end{array}
ight) \end{aligned}$$

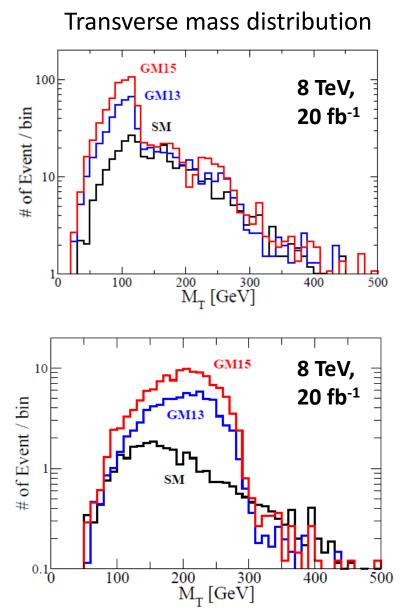
 \Box If we take two triplet VEVs are the same: $\langle \chi^0 \rangle = \langle \xi^0 \rangle = v\Delta$

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (Custodial Symmetry)

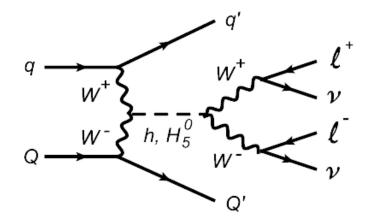


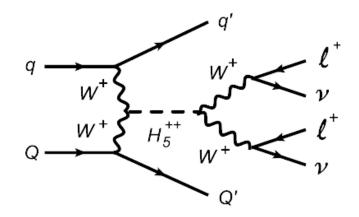
The hVV and hff couplings are expressed as

$$\begin{split} g_{hVV}^{\rm GM} &= g_{hVV}^{\rm SM} \times \left(\cos \theta_H \cos \alpha + \frac{2}{3}\sqrt{6} \sin \theta_H \sin \alpha \right) \\ g_{hff}^{\rm GM} &= g_{hff}^{\rm SM} \times \frac{\cos \alpha}{\cos \theta_H} \end{split}$$

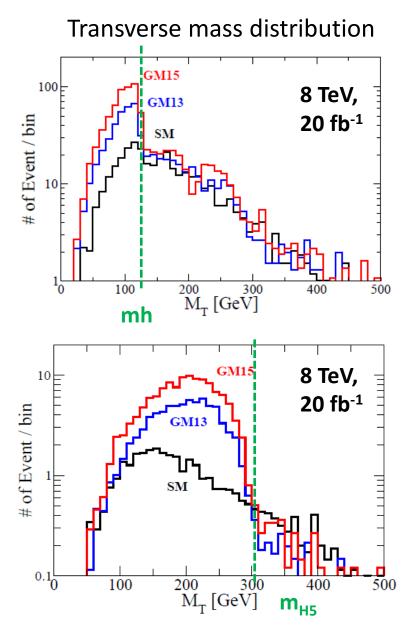

Allowed regions

All the triplet-like Higgs boson mass : 300 GeV

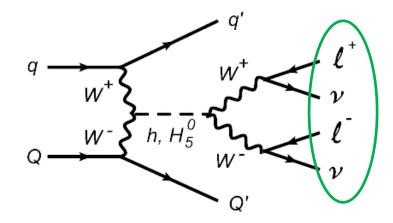


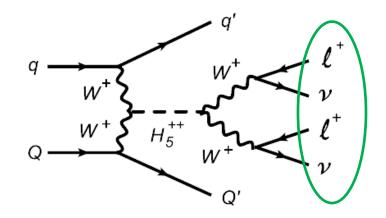

The hVV coupling can be **1.3** times larger than the SM prediction!

Vector boson fusion processes



GM13 (15): GM model with the hVV coupling being 1.3 (1.5) times larger than the SM prediction.





Vector boson fusion processes

GM13 (15): GM model with the hVV coupling being 1.3 (1.5) times larger than the SM prediction.

Summary

- Measuring the enhancement of the **hVV** couplings can be a prove of **exotic Higgs sectors**.
- In the Georgi-Machacek model, the hVV coupling can be maximally **1.3 times** larger than the SM prediction.
- The vector boson fusion process is important to extract the enhanced hVV coupling and to detect extra Higgs bosons as well.

감사합니다!

Cross section of VBF processes

Mode	$jj'\ell^+\ell^- E_T$			$jj'\ell^+\ell^+ E_T$			$jj'\ell^+\ell^+\ell^-E_T$		
Model	\mathbf{SM}	GM13	GM15	SM	GM13	GM15	SM	GM13	GM15
Basic	85	109	135	7.2	16	23	8.7	10	12
	(203)	(260)	(322)	(17)	(39)	(57)	(18)	(22)	(26)
$\Delta\eta^{jj}$	18	29	42	1.7	7.6	12	2.0	3.0	3.9
	(51)	(83)	(116)	(5.4)	(22)	(36)	(5.3)	(7.9)	(10.5)

$$\begin{split} p_T^\ell &> 10 \ \text{GeV}, \quad p_T^j > 20 \ \text{GeV}, \\ &|\eta^\ell| < 2.5, \quad |\eta^j| < 5.0, \quad \Delta R^{jj} > 0.4, \end{split}$$

Rapidity gap cut:

$$\Delta \eta^{jj} \equiv |\eta^{j_1} - \eta^{j_2}| > 3.5$$

Higgs boson couplings with gauge bosons

- Deviations in the hWW and hZZ couplings from the SM values can be defined as $g_{hVV} = g_{hVV}^{
m SM} imes c_{hVV}$ h - - -

In the general Higgs sector, c_{hvv} factors are calculated by

$$c_{hWW} = rac{\sum_{i} 2v_i [T_i(T_i+1) - Y_i^2] R_{ih}}{v_{ ext{SM}}} \quad c_{hZZ} = \sum_{i} rac{2Y_i^2 v_i R_{ih}}{\sqrt{\sum_{j} Y_j^2 v_j^2}}$$

R_{ih}: Mixing angles among CP-even Higgs bosons

Model with multi-doublet structure

 $\rightarrow c_{hVV}$ are smaller than 1

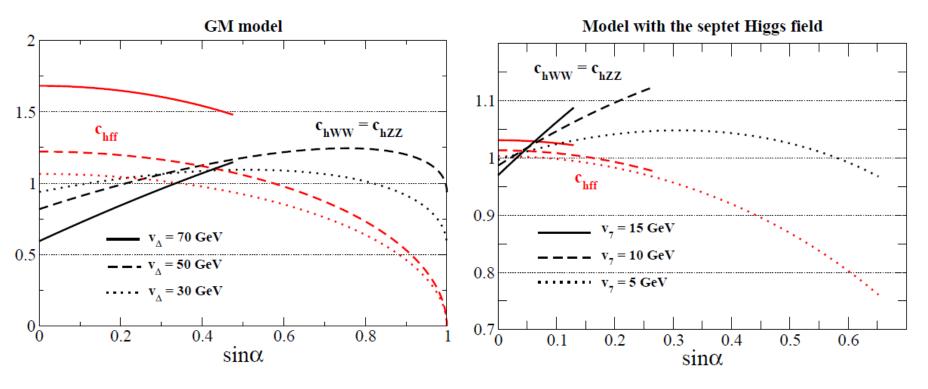
Model with exotic fields

 $\rightarrow c_{hVV}$ can be larger than 1

W, Z

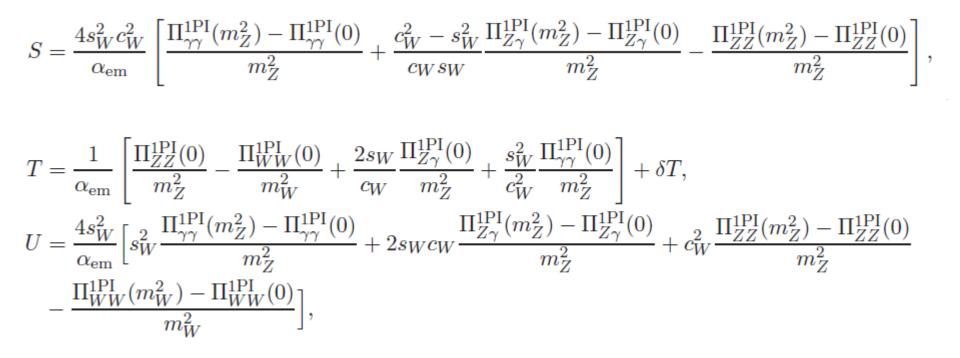
W, Z

 Y_i : hypercharge


 T_i : isospin

 $v_i: VEV$

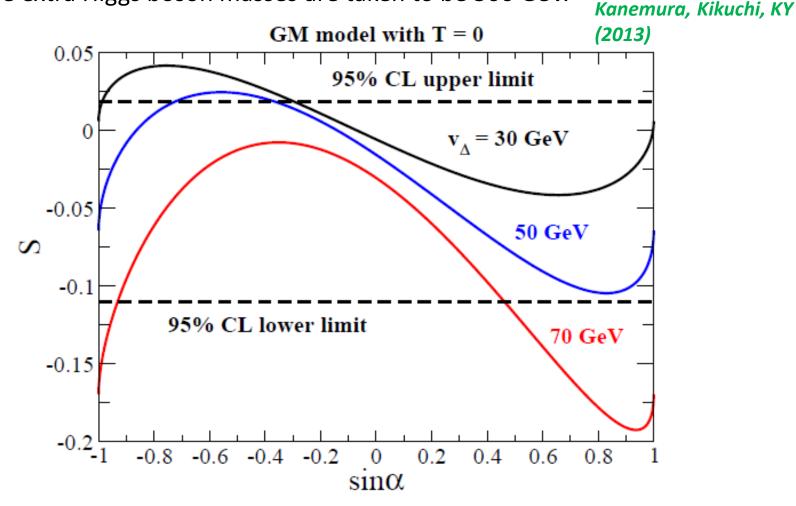
The Clebsh-Gordan coefficient $2[T(T+1)-Y^2]v$ and the factor $4Y^2v$ from exotic fields are larger than those from the doublet. (GM13): $(\theta_H, \alpha) = (40^\circ, 55^\circ),$ (GM15): $(\theta_H, \alpha) = (60^\circ, 70^\circ),$


Results in the GM model and HSM

Kanemura, Kikuchi, KY (2013)

 c_{hVV} -1~ 30% (10%) is possible in the GM model (HSM) in the allowed regions by the EWPO.

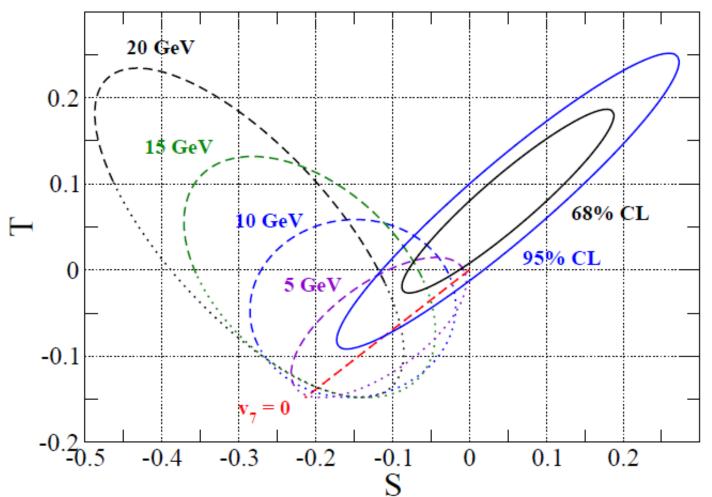
S, T and U parameters



S = 0.05 \pm 0.08 , T = 0.08 \pm 0.07 by fixing U = 0 with mh(ref) = 126 GeV

S parameter in the GM model with T=0

Gunion, Vega, Wudka (1991); Englert, Re and Spannowsky (2013)


All the extra Higgs boson masses are taken to be 500 GeV.

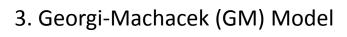
S-T plot in the HTM

All the extra Higgs boson masses are taken to be 500 GeV.

Kanemura, Kikuchi, KY (2013)

Model with the septet Higgs field

Four examples


We consider the following Higgs multiplets;

φ: (2, 1/2), χ: (3, 1), ξ: (3, 0), $φ_7$: (7, 2).

 $\varphi_{7} = \begin{pmatrix} \varphi_{7}^{3+} \\ \varphi_{7}^{4+} \\ \varphi_{7}^{3+} \\ \varphi_{7}^{3+} \\ \varphi_{7}^{++} \\ \varphi_{7}^{++} \\ \varphi_{7}^{0} \\ \varphi_{7}^{0} \\ \varphi_{7}^{-} \end{pmatrix}$

- 1. Complex Higgs Triplet Model (cHTM) $\Phi + \chi$
- 2. Real Higgs Triplet Model (rHTM) $\Phi + \xi$

 $egin{aligned} \Phi &= \left(egin{aligned} \Phi^+ \ \Phi^0 \end{array}
ight) \ \chi &= \left(egin{aligned} \chi^{++} \ \chi^+ \ \chi^0 \end{array}
ight) \ \xi &= \left(egin{aligned} \xi^+ \ \xi^0 \ \xi^- \end{array}
ight) \end{aligned}$

 $\Phi + \Delta (\chi + \xi)$

4. Higgs Septet Model (HSM)

 $\Phi + \phi_7$

$$\Delta = \left(egin{array}{cccc} \chi^{0*} & \xi^+ & \chi^{++} \ \chi^{--} & \xi^0 & \chi^+ \ \chi^{---} & \xi^- & \chi^0 \end{array}
ight)$$

Four examples

We consider the following Higgs multiplets;

φ: (2, 1/2), χ: (3, 1), ξ: (3, 0), $φ_7$: (7, 2).

Charged (Neutral) Nambu-Goldstone bosons (G⁺, G⁰)

1. Complex Higgs Triplet Model (cHTM)

$$\Phi + \chi \qquad \left(\begin{array}{cc} \Phi^+ \\ \chi^+ \end{array}\right) = \left(\begin{array}{cc} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{array}\right) \left(\begin{array}{cc} G^+ \\ H^+ \end{array}\right)$$

2. Real Higgs Triplet Model (rHTM)

$$\Phi + \xi \qquad \left(\begin{array}{cc} \Phi^+ \\ \xi^+ \end{array}\right) = \left(\begin{array}{cc} c_\beta & -s_\beta \\ s_\beta & c_\beta \end{array}\right) \left(\begin{array}{cc} G^+ \\ H^+ \end{array}\right)$$

3. Georgi-Machacek (GM) Model

$$\Phi + \Delta (\chi + \xi) \quad \begin{pmatrix} \Phi^+ \\ \xi^+ \\ \chi^+ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} c_\beta & -s_\beta & 0 \\ s_\beta & c_\beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} G^+ \\ H_3^+ \\ H_5^+ \end{pmatrix}$$

4. Higgs Septet Model (HSM)

 $\Phi + \phi_7$

$$\begin{pmatrix} \Phi^{+} \\ \varphi_{7}^{+} \\ \bar{\varphi}_{7}^{+} \end{pmatrix} = \begin{pmatrix} c_{\beta} & -\sqrt{\frac{5}{5+3c_{\beta}^{2}}}s_{\beta} & -\sqrt{\frac{3}{5+3c_{\beta}^{2}}}s_{\beta}c_{\beta} \\ \sqrt{\frac{5}{8}}s_{\beta} & \sqrt{\frac{8}{5+3c_{\beta}^{2}}}c_{\beta} & -\sqrt{\frac{15}{8(5+3c_{\beta}^{2})}}s_{\beta}^{2} \\ -\sqrt{\frac{3}{8}}s_{\beta} & 0 & -\sqrt{\frac{5+3c_{\beta}^{2}}{8}} \end{pmatrix} \begin{pmatrix} G^{+} \\ H^{+} \\ H'^{+} \end{pmatrix} \begin{bmatrix} \text{Im}\Phi^{0} \\ \text{Im}\varphi_{7}^{0} \end{bmatrix}$$

$$\left(\begin{array}{cc} {\rm Im} \Phi^0 \\ {\rm Im} \chi^0 \end{array}\right) = \left(\begin{array}{cc} c_{\beta'} & -s_{\beta'} \\ s_{\beta'} & c_{\beta'} \end{array}\right) \left(\begin{array}{cc} G^0 \\ A \end{array}\right)$$

$${
m Im}\Phi^0=G^0$$

$$\left(egin{array}{cc} {
m Im} \Phi^0 \ {
m Im} \chi^0 \end{array}
ight) = \left(egin{array}{cc} c_{oldsymbol{eta}} & -s_{oldsymbol{eta}} \ s_{oldsymbol{eta}} & c_{oldsymbol{eta}} \end{array}
ight) \left(egin{array}{cc} G^0 \ A \end{array}
ight)$$

Four examples

We consider the following Higgs multiplets; ϕ : (2, 1/2), χ : (3, 1), ξ : (3, 0), ϕ ₇: (7, 2).

1. Complex Higgs Triplet Model (cHTM)

 $\Phi + \chi$

$$\left(\begin{array}{c} \mathrm{Re}\Phi^{0} \\ \mathrm{Re}\chi^{0} \end{array}\right) = \left(\begin{array}{cc} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{array}\right) \left(\begin{array}{c} h \\ H \end{array}\right)$$

2. Real Higgs Triplet Model (rHTM)

Φ+ξ

$$\left(\begin{array}{c} \mathrm{Re}\Phi^{0} \\ \xi^{0} \end{array}\right) = \left(\begin{array}{cc} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{array}\right) \left(\begin{array}{c} h \\ H \end{array}\right)$$

3. Georgi-Machacek (GM) Model

 $\Phi + \Delta (\chi + \xi)$

4. Higgs Septet Model (HSM)

 $\Phi + \phi_7$

$$\begin{pmatrix} \sqrt{2} \mathrm{Re} \Phi^0 \\ \xi^0 \\ \sqrt{2} \mathrm{Re} \chi^0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} c_{\alpha} & -s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ H_1 \\ H_5 \end{pmatrix}$$

Mixing angle among the CP-even states

$$\left(\begin{array}{c} {\rm Re} \Phi^0 \\ {\rm Re} \varphi^0_7 \end{array}\right) = \left(\begin{array}{cc} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{array}\right) \left(\begin{array}{c} h \\ H \end{array}\right)$$

hVV couplings in various ext. Higgs sectors

Kanemura, Kikuchi, KY (2013)

We list c_{hVV} factors in the four models.

Higgs fields	aneta	an eta'	$ ho_{ m tree}$	c_{hWW}	c_{hZZ}
$\phi + \chi$ (cHTM)	$\sqrt{2}v_{\chi}/v_{\phi}$	$2v_{\chi}/v_{\phi}$	$\simeq 1-2v_\chi^2/v_\phi^2$	$c_{\beta}c_{\alpha} + \sqrt{2}s_{\beta}s_{\alpha}$	$c_{\beta'}c_{\alpha} + 2s_{\beta'}s_{\alpha}$
$\phi + \xi$ (rHTM)	$2v_{\xi}/v_{\phi}$	-	$1+4v_\xi^2/v_\phi^2$	$c_{\beta}c_{\alpha} + 2s_{\beta}s_{\alpha}$	c_{lpha}
$\phi + \Delta$ (GM model)	$2\sqrt{2}v_{\Delta}/v_{\phi}$	$2\sqrt{2}v_{\Delta}/v_{\phi}$	1	$c_{\beta}c_{\alpha} + \frac{2\sqrt{6}}{3}s_{\beta}s_{\alpha}$	$c_{\beta}c_{\alpha} + \frac{2\sqrt{6}}{3}s_{\beta}s_{\alpha}$
$\phi + \varphi_7 \ (\text{HSM})$	$4v_7/v_\phi$	$4v_7/v_\phi$	1	$c_{\beta}c_{\alpha} + 4s_{\beta}s_{\alpha}$	$c_{\beta}c_{\alpha} + 4s_{\beta}s_{\alpha}$