Summer Institute 2013 in Korea August

LARGE volume scenario in 5D SUGRA

Yusuke Yamada (Waseda univ.)

based on arXiv:1307.5585
in collaboration with Yutaka Sakamura (KEK)

Introduction

LARGE volume scenario (LVS)

 in string theoryModuli stabilization: exponentially large extra dimension

> SUSY breaking: The scale is much smaller than the Planck scale

Without fine-tuned small parameters !
But the sring theoretical effects and the non-trivial geometry are required...
V. Balasubramanian, P. Berglund, J. P. Conlon, and F. Quevedo (2005)
J. P. Conlon, F. Quevedo, and K. Suruliz (2005)

Introduction

Q. Can we realize the LVS with the simpler theory?
A. Yes,

I'Il show that the LVS can be realized
in the 5D supergravity on S^{1} / Z_{2}
without the stringy effects.

Multiple moduli in 5D SUGRA

General 5D SUGRA on $S^{1} / Z_{2} \longrightarrow \quad$ General 4D effective theory
 T. Kugo and K. Ohashi (2001)
 reduction

5 D vector multiplet $\longrightarrow 4 \mathrm{D}$ vector multiplet

Well known set-up : one modulus
= radion

Multiple moduli in 5D SUGRA

General 5D SUGRA on $S^{1} / Z_{2} \longrightarrow \quad$ General 4D effective theory
 T. Kugo and K. Ohashi (2001)

General set-up : multiple moduli
= radion + non-geometric moduli
H. Abe, H. Otsuka, Y. Sakamura and Y.Y (2011)

The norm function and Kahler potential in 5D SUGRA

The size of the extra dim. $\Rightarrow L_{\text {phys }}=\left\langle\mathcal{N}^{\frac{1}{3}}\right\rangle$

$$
\mathcal{N}=C_{I J K} \operatorname{Re} T^{I} \operatorname{Re} T^{J} \operatorname{Re} T^{K}
$$

The norm function and Kahler potential in 5D SUGRA

The size of the extra dim. $\rightarrow L_{\text {phys }}=\left\langle\mathcal{N}^{\frac{1}{3}}\right\rangle$

$$
\mathcal{N}=C_{I J K} \operatorname{Re} T^{I} \operatorname{Re} T^{J} \operatorname{Re} T^{K}
$$

Kähler potential: $K=-\log \mathcal{N}$

$$
K_{I} K^{I \bar{J}} K_{\bar{J}}=3
$$

The norm function and Kahler potential in 5D SUGRA

The size of the extra dim. $\longrightarrow L_{\mathrm{phys}}=\left\langle\mathcal{N}^{\frac{1}{3}}\right\rangle$

$$
\mathcal{N}=C_{I J K} \operatorname{Re} T^{I} \operatorname{Re} T^{J} \operatorname{Re} T^{K}
$$

1-loop corrected Kähler potential: $K=-\log (\mathcal{N}+\xi)$

LVS in 5D SUGRA

$$
K=-\log (\mathcal{N}+\xi) \quad W=W_{0}+A e^{-a T_{s}}
$$

where

$$
\mathcal{N}=\left(\operatorname{Re} T_{b}\right)^{3}-C_{s}\left(\operatorname{Re} T_{s}\right)^{3}
$$

$$
\begin{aligned}
a & =\mathcal{O}\left(4 \pi^{2}\right) \\
W_{0} & =\mathcal{O}\left(M_{p l}^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{b}=\tau_{b}+i \rho \quad \sim \text { radion } \\
& T_{s}=\tau_{s}+i \sigma \quad \sim \text { non-geometric modulus }
\end{aligned}
$$

Moduli stabilization

$$
\begin{aligned}
V & \sim \frac{1}{\mathcal{N}}\left(\frac{2 \mathcal{N}}{3 C_{s} \tau_{s}}(a A)^{2} e^{-2 a \tau_{s}}+4 a \tau_{s} W_{0} A e^{-a \tau_{s}} \cos (a \sigma)\right)+\frac{6 \xi W_{0}^{2}}{\mathcal{N}^{2}} \\
& =\frac{2(a A)^{2}}{3 C_{s} \tau_{s}} e^{-2 a \tau_{s}}+4 a \tau_{s} W_{0} A \cos (a \sigma) \frac{e^{-a \tau_{s}}}{\mathcal{N}}+6 \xi W_{0}^{2} \frac{1}{\mathcal{N}^{2}}
\end{aligned}
$$

Non-perturbative term vs Volume suppressed term

$$
\begin{gathered}
\langle\mathcal{N}\rangle \sim \frac{3 \xi W_{0} e^{a\left\langle\tau_{s}\right\rangle}}{a\left\langle\tau_{s}\right\rangle A} \quad\left\langle\tau_{s}\right\rangle \sim\left(\frac{\xi}{C_{s}}\right)^{\frac{1}{3}} \\
L_{\text {phys }}=\left\langle\mathcal{N}^{\frac{1}{3}}\right\rangle \gg 1 \quad \text { (In Planck unit) }
\end{gathered}
$$

Exponentially large extra dimension!

SUSY breaking in 5D LVS

Gravitino mass: $m_{3 / 2}=\frac{W_{0}}{\sqrt{\mathcal{N}}} \sim \mathcal{O}\left(M_{p l} / \sqrt{\mathcal{N}}\right) \ll M_{p l}$

$$
\text { F-terms: } \begin{aligned}
& \frac{F^{T_{b}}}{T_{b}+\bar{T}_{b}} \\
\sim & \sim \frac{W_{0}}{\sqrt{\mathcal{N}}}=m_{3 / 2} \\
& \frac{F^{T_{s}}}{T_{s}+\bar{T}_{s}}
\end{aligned} \sim \frac{W_{0}}{\left(a \tau_{s}\right) \sqrt{\mathcal{N}}} \sim \frac{m_{3 / 2}}{\log \mathcal{N}} .
$$

Small SUSY breaking scale can be realized naturally!

Comparison of the 5D LVS with the string LVS

"Swiss-cheese" Calabi-Yau manifold

$$
\mathcal{V}=\left(T_{b}+\bar{T}_{b}\right)^{3 / 2}-\left(T_{s}+\bar{T}_{s}\right)^{3 / 2}
$$

$$
K=-2 \log (\mathcal{V}+\xi) \longleftarrow \alpha^{\prime} \text {-correction }
$$

Non-geometric modulus \qquad Small cycle modulus

Summary

We construct the LVS in 5D SUGRA without stringy effects.

- General set-up of 5D SUGRA \rightarrow multi-moduli
- Casimir term \rightarrow role of the α^{\prime} correction in string theory

Future work

Construction of a realistic model in 5D LVS (Dark matter, inflation, Higgs mass...etc)

Thank you.

Appendix

Anomaly mediation in 5D LVS

$$
\frac{F^{\phi_{C}}}{\phi_{C}}=\frac{m_{3 / 2}}{\mathcal{N}} \ll m_{3 / 2}
$$

Anomaly mediation is much suppressed by the leading no-scale structure.

M.A. Luty and N. Okada (2002)
N. Arkani-Hamed and S. Dimopoulos (2005)

The value of ξ

$$
\xi \equiv \frac{\left(\bar{n}_{H}-n_{V}-1\right) \zeta(3)}{32 \pi^{2}}
$$

n_{V} : The number of the vector multiplets
\bar{n}_{H} : The effective number of the hypermultiplets
where
$\bar{n}_{H}=\sum_{a} n_{a} \frac{\mathcal{Z}\left(d_{a} \cdot \operatorname{Re} T / 2\right)}{\mathcal{Z}(0)} \quad \mathcal{Z}(x)=-\int_{0}^{\infty} d \lambda \lambda \ln \left(2 e^{-\sqrt{\lambda^{2}+x^{2}}} \sinh \sqrt{\lambda^{2}+x^{2}}\right)$

Multiplets in 4D effective theory

	5D vector multiplet (even)		5D vector multiplet(odd)		Hypermultiplet	
4D multiplet	V^{I} vector	\tilde{T}^{I} chiral	$\tilde{V}^{I^{\prime}}$ vector	$T^{I^{\prime}}$ chiral	Q_{a} chiral	Q_{a}^{\prime} chiral
parity	+	-	-	+	+	-
Zero mode	V^{I}			$T^{I^{\prime}}$	Q_{a}	
Role in 4D	vector (gauge)			moduli	matter	

KK mass \& moduli masses

Gravitino mass: $m_{3 / 2}=\frac{W_{0}}{\sqrt{\mathcal{N}}} \sim \mathcal{O}\left(M_{p l} / \sqrt{\mathcal{N}}\right)$
KK mass \& Moduli mass: $m_{\pi_{0}} \sim \frac{m_{3 / 2}}{\sqrt{\mathcal{N}}} \quad m_{\rho} \sim 0$

$$
\begin{aligned}
& m_{\tau_{s}} \sim m_{\sigma} \sim(\log \mathcal{N}) m_{3 / 2} \quad m_{K K} \sim \frac{M_{p l}}{\mathcal{N}^{1 / 3}} \\
& M_{p l} \gg m_{K K} \gg m_{3 / 2}
\end{aligned}
$$

Analysis by the effective theory is valid!

