2HDM with spontaneous Higgs symmetry breaking

Chaehyun Yu (KIAS)

Based on PLB 717, 202 (2013); in preparation with P. Ko (KIAS) and Yuji Omura (TUM)

Extension of Higgs sector

- a new boson was discovered on July 4, 2012.
- spin and parity: 0+ (other hypotheses are excluded at 95% C.L. or higher)
 - the SM Higgs boson?
 - exist extra Higgs bosons?
- "Is it the Standard Model Higgs?" is far from being settled.

(Lecture by Ian Low)

- Multi-Higgs scenarios may be motivated by SUSY or GUT, etc.
- two Higgs doublet models and chiral U(1)' models.

Two Higgs Double Model

- One of the simplest models to extend the SM Higgs sector.
- In general, the models with many Higgs suffer from Flavor changing process.
- strong constraint on the Flavor changing neutral current (FCNC).

Z₂ symmetry

• A simple way to avoid the FCNC problem is to assign ad hoc Z₂ symmetry.

$$Z_2: (H_1, H_2) \to (+H_1, -H_2)$$

→ Natural Flavor Conservation (NFC).

Type	H_1	H_2	U_R	D_R	E_R	N_R	Q_L, L
I	+		+	+	+	+	+
	+		+			+	+
III'	+		+	+			+
IV	+		+		+		+

=Type X, lepton specific

=Type Y, flipped

• Type I:
$$V_y = y_{ij}^U \overline{Q_{Li}} \widetilde{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_1} N_{Rj}$$
.

• Type II:
$$V_y = y_{ij}^U \overline{Q_L} (\widehat{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_2 D_{Rj} + y_{ij}^E \overline{L_i} H_2 E_{Rj} + y_{ij}^N \overline{L} (\widehat{H_1} N_{Rj})$$
.

• Type III:
$$V_y = y_{ij}^U \overline{Q_{Li}} \widetilde{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_2 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}$$
.

• Type IV :
$$V_y = y_{ij}^U \overline{Q_{Li}} \widetilde{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_2 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}$$
.

Generic problems of 2HDM

- It is well known that discrete symmetry could generate a domain wall problem when it is spontaneously broken.
- Usually the Z_2 symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z₂ symmetric 2HDM potential

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2}$$

$$+ \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.}]$$

• the origin of such a discrete symmetry?

2HDM with spontaneous Higgs Symmetry breaking

propose to replace the Z_2 symmetry in 2HDM by new U(1)_H symmetry associated with Higgs flavors.

- H₁ and H₂ have different U(1)_H charges.
- Higgs signal will be changed by Φ and Z_H .
- no domain wall problem.

Type-I 2HDM

Only one Higgs couples with fermions.

$$V_y = y_{ij}^U \overline{Q_{Li}} \widetilde{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_1} N_{Rj}.$$

anomaly free U(1)_H with RH neutrino.

U_R	D_R	Q_L	L	E_R	N_R	H_1	Type	
u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u + d)	-(u+2d)	$\frac{(u-d)}{2}$		
0	0	0	0	0	0	0	$h_2 \neq 0$	
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$	
1	-1	0	0	-1	1	1	$U(1)_R$	
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_Y$	

- SM fermions are U(1)_H singlets.
- Z_H is fermiophobic and Higgphilic.
- $H^{\pm}W^{\mp}Z_{H}$ is the main source of production and discovery of Z_{H} .

Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

$$V_y = y_{ij}^U \overline{Q_{Li}} \widetilde{H_1} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_2 D_{Rj} + y_{ij}^E \overline{L_i} H_2 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_1} N_{Rj}.$$

$ U_{\scriptscriptstyle R} $	$D_{\!\scriptscriptstyle R}$	$Q_{\scriptscriptstyle L}$	L	E_R	$N_{\scriptscriptstyle R}$	H_1	H_2
u	0	0	0	0	и	и	0

Requires extra chiral fermions for cancellation of gauge anomaly.

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$
q_{Li}	3	1	2/3	$\hat{Q}_L = u + \hat{Q}_R$
q_{Ri}	3	1	2/3	\hat{Q}_R
n_{Li}	1	1	0	$\hat{n}_L = u + \hat{n}_R$
n_{Ri}	1	1	0	\hat{n}_R

Two SM vector-like pairs

Higgs Potential

in the ordinary 2HDM with Z₂ symmetry

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - \left((m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.].$$

not invariant under U(1)_H

• in the case with Φ , $H_1^{\dagger}H_2\Phi$ is gauge-invariant if $h_{\phi}=h_1-h_2$.

$$\begin{split} \Delta V &= m_\Phi^2 \Phi^\dagger \Phi + \frac{\lambda_\Phi}{2} (\Phi^\dagger \Phi)^2 + \underbrace{(\mu H_1^\dagger H_2 \Phi + h.c.)} \\ &+ \mu_1 H_1^\dagger H_1 \Phi^\dagger \Phi + \mu_2 H_2^\dagger H_2 \Phi^\dagger \Phi, \end{split} \quad \text{Source of pseudo-scalar mass} \end{split}$$

• in the 2HDM with U(1)_H

$$V = \hat{m}_{1}^{2}(|\Phi|^{2})H_{1}^{\dagger}H_{1} + \hat{m}_{2}^{2}(|\Phi|^{2})H_{2}^{\dagger}H_{2} - \left(m_{3}^{2}(\Phi)H_{1}^{\dagger}H_{2} + h.c.\right)$$

$$+ \frac{\lambda_{1}}{2}(H_{1}^{\dagger}H_{1})^{2} + \frac{\lambda_{2}}{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}|H_{1}^{\dagger}H_{2}|^{2}$$

$$+ m_{\Phi}^{2}|\Phi|^{2} + \lambda_{\Phi}|\Phi|^{4}.$$

$$\hat{m}_{i}^{2}(|\Phi|^{2}) = m_{i}^{2} + \tilde{\lambda}_{i}|\Phi|^{2} \qquad m_{3}^{2}(\Phi) = \mu\Phi^{n}, \text{ where } n = (q_{H_{1}} - q_{H_{2}})/q_{\Phi}$$

Theoretical constraints

- perturbativity
 - couplings should not be larger than some value which makes a perturbative treatment meaningless.
- unitarity
 - the scattering matrix elements satisfy unitary limits.
- vacuum stability
 - Higgs potential is bounded from below.

$$\begin{split} \langle \Phi \rangle = 0 \text{ direction} \\ \lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 > -\sqrt{\lambda_1 \lambda_2}, \\ \langle \Phi \rangle \neq 0 \text{ direction} \\ \lambda_{\Phi} > 0, \ \lambda_1 > \frac{\widetilde{\lambda_1}^2}{\lambda_{\Phi}}, \ \lambda_2 > \frac{\widetilde{\lambda_2}^2}{\lambda_{\Phi}}, \ \lambda_3 - \frac{\widetilde{\lambda_1} \widetilde{\lambda_2}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_1 - \frac{\widetilde{\lambda_1}^2}{\lambda_{\Phi}}\right) \left(\lambda_2 - \frac{\widetilde{\lambda_2}^2}{\lambda_{\Phi}}\right)}, \end{split}$$

$$\lambda_3 + \lambda_4 - \frac{\widetilde{\lambda_1}\widetilde{\lambda_2}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_1 - \frac{\widetilde{\lambda_1}^2}{\lambda_{\Phi}}\right)\left(\lambda_2 - \frac{\widetilde{\lambda_2}^2}{\lambda_{\Phi}}\right)}.$$

Experimental constraints

charged Higgs

$$\tan \beta \ge 1$$

 should be corrected in the type-I 2HDM

$$\mu_j^i = \frac{\sigma(pp \to h)^j \operatorname{Br}(h \to i)}{\sigma(pp \to h)^j_{SM} \operatorname{Br}(h \to i)_{SM}}$$

11

Heavy Higgs search

$$H \rightarrow ZZ \rightarrow 4l$$

EWPOs in 2HDM with $U(1)_H$

- SM + extended Higgs sector + Z_H (+ extra fermions).
- oblique parameters : S,T,U
- the dominant effects of new physics appear in self energies of gauge bosons.

$$S = 0.03 \pm 0.10, \ T = 0.05 \pm 0.12, \ U = 0.03 \pm 0.10,$$

Baak et al., EPJC 72, 2205 (2012)

- If Z_H couples with the SM fermions, need to analyze full one-loop amplitudes with Z_H .
- consider two cases (in the type-I 2HDM).
- 1. Z_H is decoupled in the limit of $m_{Z_H} >> EW$ scale.
- 2. Z_H is fermiophobic for u=d=0.

2HDM with Φ

the gg fusion

- consistent with CMS in the 1σ level while consistent with ATLAS in the 2σ.
- In the ordinary type-I 2HDM, $0.8 \lesssim \mu_{gg}^{\gamma\gamma} \lesssim 1.2$ and $0.6 \lesssim \mu_{gg}^{ZZ} \lesssim 1.1$.
- In the type-I 2HDM with U(1)_H, $0 \lesssim \mu_{gg}^{\gamma\gamma} \lesssim 1.2$ and $0 \lesssim \mu_{gg}^{ZZ} \lesssim 1.1$.
- distinguishable in the region of $\mu_{qq}^{\gamma\gamma} \lesssim 0.8$ and $\mu_{qq}^{ZZ} \lesssim 0.6$.

2HDM with fermiophobic Z_H

- realized with u=d=0 and assume $\alpha_1 = \alpha_2 = 0$.
- Z_H can mix with the Z boson.

$$M^{2} = \begin{pmatrix} g_{Z}^{2}v^{2} & -g_{Z}g_{H}(h_{1}v_{1}^{2} + h_{2}v_{2}^{2}) \\ -g_{Z}g_{H}(h_{1}v_{1}^{2} + h_{2}v_{2}^{2}) & g_{H}^{2}(h_{1}^{2}v_{1}^{2} + h_{2}^{2}v_{2}^{2}) \end{pmatrix}$$

- affects EWPOs and Drell-Yan process.
- requires that corrections to the most sensitive variables are within the errors of the SM prediction.

$$\rho_{\text{2HDM}}^{\text{tree}} = 1 + \frac{\Delta M_{ZZ_H}^2}{M_{Z0}^2} \xi, \text{ where } \rho_{\text{SM}} = 1.01051 \pm 0.00011.$$

$$\Gamma_Z = 2.4961 \pm 0.0010 \text{ GeV}.$$

$$\sigma(e^+e^- \to \mu^+\mu^-).$$

- requires ξ < 10⁻³, which is safe for the Drell-Yan process at LHC.
- impose the constraints on S,T,U at the one-loop level.

2HDM with fermiophobic Z_H

• gg fusion

Conclusions

- We proposed a new resoluton of the Higgs mediated FCNC problem in 2HDM with gauged U(1)_H which can be called as Higgs symmetry.
- easily realize "Natural Flavor Conservation" for proper U(1)_H assignment.
- studied the Higgs production at the LHC in the type-I 2HDM with spontaneous Higgs symmetry breaking by considering theoretical and experimental constraints.
- For small $\mu_{gg}^{\gamma\gamma}$ and μ_{gg}^{ZZ} , it is possible to distinguish from the ordinary 2HDM.

2HDM with Φ

the vector boson fusion

experimental uncertainties are large.

$$\mu_{VVh}^{WW} = -0.047_{-0.555}^{+0.747}$$
 $\mu_{VVh}^{\tau\tau} = 1.423_{-0.637}^{+0.696}$

• the signal strengths could be larger than the SM prediction in the small cosα or large sinβ limit.

$$\lambda_{hVV} = \cos \alpha_1 \sin(\beta - \alpha), \quad \lambda_{hff} = \cos \alpha \cos \alpha_1 / \sin \beta.$$