
Exploring for a light composite scalar 
in many flavor QCD

Hiroshi Ohki
KMI, Nagoya University

Summer Institute 2013

References: 
Phys.Rev. D86 (2012) 054506, 
Phys. Rev. D87, 094511 , arXiv:1302.6859 [hep-lat].
arXiv:1305.6006 [hep-lat]
(LatKMI collaboration)



Introduction



“Higgs boson” 
• Higgs like particle (126 GeV) has been found at LHC.

• Consistent with the Standard Model Higgs. But true 
nature is so far unknown.

• Many candidates for beyond the SM.

one interesting possibility is

Dynamical breaking of electroweak symmetry
-> composite Higgs

– (walking) technicolor 
• “Higgs” = dilaton (pNGB) due to breaking of the 

approximate scale invariance



Origin of the electroweak symmetry breaking

• Technicolor (dynamical symmetry breaking model, 
alternative to Higgs mechanism in SM )

Electroweak symmetry breaking
-> techni-fermion Q condensation  (scale up of QCD) 
(c.f. Chiral symmetry breaking in QCD)

Ex.

a new strong interaction



Technicolor model

• Flavor problem -> ETC origin non-renormalizable operators 
    give a realistic flavor structure 
 FCNC problem need to be resolved.

• EW precision measurement
e.g. S-parameter could be small near conformal phase.
       or negative contribution by ETC induced operator 
    
• Existence of a light composite scalar (126 GeV) !!



• “Higgs” = pseudo Nambu-Goldstone boson
–  breaking of the approximate scale invariance (dilaton)

[Yamawaki-Bando-Matumoto]

walking (conformal) dynamics

QCD like 

Conformal



2-loop running coupling in large Nf QCD

IR fixed point at
　　　　　　　

Candidate of near-conformal gauge theory → Large Nf QCD 



Walking (conformal) behavior : non-perturbative gauge dynamics
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Large Nf QCD:  benchmark test of walking dynamics

•Walking technicolor (WTC) could be realized just below conformal window.
•What the value of the anomalous dimensions?  Preferable value of ! is order 1. 
•Rich hadron structures may be observed (LHC). 

Asymptotic non-free

Conformal window

QCD-like

Walking technicolor

Lattice!! 



Large Nf QCD on the Lattice
               
[LatKMI collaboration]
Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi, 
Toshihide Maskawa, Kei-ichi Nagai, Kohtaroh Miura, Hiroshi 
Ohki, Enrico Rinaldi, Akihiro Shibata, KoichiYamawaki, 
TakeshiYamazaki



SU(3) with fundamental fermions
Our goals: 
• Understand the flavor dependence of the theory
• Find the conformal window
• Find the walking regime and investigate scalar mass and 
          the anomalous dimension

Our current status (lattice): 
• Nf=16: likely conformal 
• Nf=12: consistent with IR conformal 
• Nf=8: studies suggests walking behavior
• Nf=4: chiral broken and enhancement of chiral condensate

Nf=8 and 12 are good candidates of 
walking (near-conformal) technicolor 
model
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• SU(3), Nf= 8, 12 flavor

• use of improved staggered action
• to get nearly continuum results from non-zero lattice spacing
• to reduce flavor violation for good SU(N) chiral symmetry
• bound to Nf=4 n

• use tree level Symanzik gauge action

• Nf=8 :   !=6/g2=3.8,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.02≦mf≦0.1
• Nf=12 : !=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.1

• Statistics ~ more than 5000 trajectories

 simulation setup



Lattice simulations
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Scalar spectrum ! a flavor singlet fermion bilinear operator 

flavor singlet scalar measurement
• huge number of configurations 
• consistency check by the measurement of 0++ glueball correlator.
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Review : lattice correlation function
case:  two-point correlation function for pseudo-scalar
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case:  flavor-singlet scalar scalar

Full correlator consists of connected and (vacuum-subtracted)
disconnected diagrams.  In general, disconnected diagram is very noisy.



Example
 [Nf=12, V=24^3 x 32, m=0.06]



Flavor singlet scalar from fermion bilinear operator
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[Nf=12]



Effective mass in Nf = 12 (mf = 0.06,243×32 with Nconf = 14000,

Preliminary)

meff(t) = log(CH(t)/CH(t+1)) t"1−−−→ mH
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good ground state mass plateau



Result (Nf=12) 
LatKMI, arXiv:1305.6006
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This requires computationally expensive measurements
and high statistics in order to give results with relatively
small errors. Previous studies of the scalar spectrum us-
ing fermionic operators in Nf = 12 QCD either did not
include the computation of disconnected diagrams [20],
or were restricted to an unphysical region of the param-
eter space that is not related to the continuum limit
physics of the asymptotically free theory [21].
We discretize the continuum SU(3) gauge theory with

12 degenerate fermions using 3 degenerate staggered
fermion species of bare mass mf (each coming in 4
tastes). In this letter all the dimensionful quantities are
expressed in lattice units. At finite lattice spacing, where
the simulations take place, the continuum flavor symme-
try does not hold exactly. We use a tree–level Symanzik
gauge action and the highly improved staggered quark
(HISQ) [22] action without the tadpole improvement and
the mass correction in the Naik term [23] for the fermions.
The flavor symmetry breaking of this action is highly sup-
pressed in QCD [23] and we observed that it is almost
negligible in our Nf = 12 QCD simulations [10]. At
fixed lattice spacing, defined by the bare coupling con-
stant β = 6/g2 = 4.0, we simulate three physical volumes
L3 with L = 24, 30, 36 and aspect ratio T/L = 4/3. We
investigate the flavor–singlet scalar spectrum at four dif-
ferent bare quark masses mf = 0.05, 0.06, 0.08, and 0.10.
These parameters allow us to check for finite size system-
atics and to test hyperscaling [24, 25].
We carry out the simulations by using the standard

hybrid Monte-Carlo (HMC) algorithm using MILC code
version 7 [26] with some modifications to suit our needs,
such as the Hasenbusch mass preconditioning [27] to re-
duce the large computational cost at the smaller mf . Be-
side the excellent flavor(–taste) symmetry, another im-
portant feature of our simulations is the large number
of Monte Carlo trajectories from uninterrupted Markov
chains obtained after more than 1000 trajectories for
thermalization. For all sets of parameters explored, we
collect between 8000 and 30000 trajectories and we do
measurements every 2 trajectories. This is a necessary
step to contrast the rapid degradation of the signal in the
flavor–singlet scalar correlators. The simulation param-
eters and number of trajectories for each parameter are
tabulated in Table I. For the measurement of the ground
state mass of this channel we used interpolating operators
including both the fermionic fields and the gauge fields,
with the appropriate quantum numbers. The statistical
errors for the fermionic and gluonic measurements are
estimated by jackknife method with bin size of 200 and
160 trajectories, respectively.
In our fermionic scalar calculation, we employ the local

fermionic bilinear operator

OS(t) =
3∑

i=1

∑

!x

χi(#x, t)χi(#x, t) , (1)

where the index i runs through different staggered
fermion species. The explicit staggered spin–taste struc-
ture of the bilinear operator can be written as χi(y +

L3
× T mf Ncfgs mσ mπ mσ/mπ

243 × 32 0.05 11000 0.240(12)(0002) 0.3273(19)∗ 0.73(4)(00)

243 × 32 0.06 14000 0.283(16)(0401) 0.3646(16)∗ 0.78(4)(10)

243 × 32 0.08 15000 0.363(21)(0222) 0.4459(11) 0.81(5)(05)

243 × 32 0.10 9000 0.458(41)(3206) 0.5210(7) 0.88(8)(61)

303 × 40 0.05 10000 0.277(13)(1907) 0.3192(14)∗ 0.87(4)(62)

303 × 40 0.06 15000 0.331(14)(4510) 0.3648(9)∗ 0.91(4)(123 )

303 × 40 0.08 15000 0.386(21)(0020) 0.4499(8) 0.86(5)(04)

303 × 40 0.10 4000 0.437(50)(0709) 0.5243(7) 0.83(9)(12)

363 × 48 0.05 5000 0.285(22)(0003) 0.3204(7)∗ 0.89(7)(01)

363 × 48 0.06 6000 0.307(21)(2304) 0.3636(9)∗ 0.84(6)(61)

TABLE I: Parameters of lattice simulations for Nf = 12 QCD
at fixed β = 4.0. Ncfgs is the number of saved gauge configu-
rations. The second error of mσ is a systematic error coming
from the fit range. The values of mπ are from Ref. [10], but
the ones with (∗) have been updated. The error on mσ/mπ

comes only from mσ.

A)(1 ⊗ 1)ABχi(y + B) with y as an origin of the hy-
percube, and A, B as vectors in the hypercube. Note
that this system has exact symmetry for exchanging the
species. The taste symmetry breaking, which is to vanish
in the continuum limit, is very small in our simulations.
Therefore, a part of the full flavor symmetry is exact, and
the rest is only broken by a small amount. From OS(t)
we calculate the correlator, which is constructed by both
the connected C(t) and vacuum–subtracted disconnected
D(t) correlators, 〈OS(t)O

†
S(0)〉 = 3D(t)−C(t), where the

factor in front of D(t) comes from the number of species.
It is noted that the contribution of D(t) with respect to
C(t) increases with Nf = #species×4.
The operatorOS overlaps with the flavor–singlet scalar

state (σ), but also with a flavor non–singlet pseudo–scalar
state (πSC), which is the staggered parity partner of σ;
therefore, in the large–time limit, the correlator above
behaves as

3D(t)− C(t) = Aσ(t) + (−1)tAπ
SC
(t) , (2)

where AH(t) = AH(e−mHt + e−mH(T−t)), and the
pseudo–scalar state has a (γ5γ4 ⊗ ξ5ξ4) spin–taste struc-
ture, but is species–singlet.
Because C(t) can be regarded as a flavor non–singlet

scalar correlator, it should have a contribution from the
lightest non–singlet scalar state (a0) (e.g. a0(980) in
QCD [13]), and its staggered parity partner (πSC). When
t is large, we can therefore write

− C(t) = Aa0
(t) + (−1)tAπSC

(t) , (3)

where both a0 and πSC are species non-singlet and have
the same taste structure as σ and πSC, respectively. The
πSC state is degenerate with the (γ5⊗ξ5) π and also with
πSC (mπSC

= mπ = mπ
SC
) when the taste symmetry,

thus the full flavor symmetry, is recovered.
The disconnected correlator D(t), which is essential to

obtain the σ mass, can be calculated by inverting the
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted lines respectively.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see Ta-
ble I) compared to the mass of the pseudo–scalar π state in
units of the lattice spacing. Errors are statistical and system-
atics added in quadrature. For comparison, gluonic masses
mG are also shown. The hyperscaling curve is described in
the text. The triangle and filleds square symbols are slightly
shifted for clarity.

large–time behavior (t = 6–8) of the correlator and we
obtain mG = 0.242(68) at mf = 0.05, mG = 0.246(79)
at mf = 0.06 and mG = 0.28(12) at mf = 0.08. These
mG are all lighter than mπ by more than one standard
deviation, while the statistical errors are large.
Figure 4 presents the flavor–singlet scalar spectrum as

function of mf . All the mG’s are consistent with mσ at
each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statistics.
For a check of consistency with the hyperscaling of mπ,
we fit mσ on the largest volume data at each mf using
the hyperscaling form mσ = C(mf )1/1+γ with a fixed
γ = 0.414 estimated from mπ [10], which gives a reason-
able value of χ2/dof = 0.12. The fit is shown in Fig.4.
We also estimate the ratiomσ/mπ at each parameter and
report it in Table I. All the ratios are smaller than unity

by more than one standard deviation including the sys-
tematic error, except the one at mf = 0.06 on L = 30, as
previously explained. A constant fit with the largest vol-
ume data at eachmf gives 0.86(3). These results are con-
sistent with the theory being infrared conformal. More-
over they do not show an abnormal mf dependence of
mσ similar to the one observed in Ref. [21], by which an
effect of an unphysical phase boundary would have been
suspected.
To summarize, we performed the first study of the

scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.
Despite it being studied by several groups using differ-

ent approaches,Nf = 12 QCD has not yet been identified
as an infrared–conformal or near–conformal theory. The
majority of studies suggests the presence of an infrared
fixed point with a somewhat smaller anomalous dimen-
sion than the one expected for the walking technicolor. If
this turns out to be the case, such a theory would not be
a viable candidate for a phenomenologically interesting
walking technicolor model. Nevertheless, the light scalar
state observed for Nf = 12 in this study is regarded as
a reflection of the dilatonic nature of the conformal dy-
namics, since otherwise the p–wave bound state (scalar)
is expected to be heavier than the s–wave one (pseudo–
scalar). Thus, it is a promising signal for the search of a
successful walking theory, where a similar conformal dy-
namics is operative in a wide infrared region above the
chiral–symmetry–breaking scale of O(Fπ).
Another consequence of this study is that the use of

chiral perturbation theory, to test for chiral symmetry
breaking signals, should be more involved to include the
light scalar degree of freedom, in the relevant fermion
mass region explicitly measured in our simulations. At
the moment, our results are consistent with the theory
being in the conformal window.
While further investigation of the scalar state in Nf =

12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [36].
Acknowledgments.– Numerical simulation has been car-

Goldstone pion 
mass

empty ... fermionic

full      ... gluonic

(arXIv: 1302.4577),  arXiv:1305.6006

O++ scalar is lighter than pion.
Different from ordinary QCD results.



Result (Nf=8) 
[very preliminary] 

L T mf #confs

18 24 0.04 5600
0.06 9000
0.08 7500
0.10 8500

24 32 0.04 3400
0.06 14000
0.08 3600

30 40 0.02 7900
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Result of flavor singlet scalar meson mass 

• Statistical error only.
• Fermion mass dependence is observed. 
• No visible finite volume effect (L=18 and 24 are consistent for m>0.04).

[Nf=8]
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• Scalar(0++) is as light as NG-pion. 

Comparison with NG-boson mass [Nf=8]
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Comparison with vector meson mass

• rho mass > flavor singlet scalar mass

[Nf=8]



chiral limit extrapolation

To estimate the scalar mass in the chiral limit,
we carry out the chiral extrapolation with polynomial fit.
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Simple estimate of the scalar mass in the chiral limit 
P (t, x) = ψ̄(t, x)γ5ψ(t, x)

PR = ZP P

Introduce ”smell” → ψa
α(x) : Nc × Ns(= Nc) matrix

NHu = 1/
√

2.72 + 1.32

NHd
= 1/

√
2(0.12 + 5.82)

I = 1, · · · , |M |
T 4

df
m2

π = c1mf + c2m2
f

mρ = c0 + c1mf + c1m2
f

mσ = c0 + c1mf

df
mπ → 0, Fπ = 0.031(1), mρ = 0.168(52)

df
mσ = 0.078(73)
mρ = 0.168(52)

at mf = 0
4π/g2 = 24 at MGUT = 2.0 × 1016

parameter range : −10 < nij < 10

y6 y7 (1)

F = 1
2πM, M =

(
n45 n47

n56 n67

)
nij ∈ Z

mσ = Cm1/(1+γ)
f

ML =

(
n45 n47

n56 n67

)

L

MR =

(
n45 n47

n56 n67

)

R

DetML = DetMR = 3
MH = − (ML + MR)

1

2pt linear extrapolation

fit data: mf=0.02, L=30 and mf=0.04, L=24
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Chiral limit extrapolation (ChPT-like fit)

In the chiral limit

P (t, x) = ψ̄(t, x)γ5ψ(t, x)

PR = ZP P

Introduce ”smell” → ψa
α(x) : Nc × Ns(= Nc) matrix

NHu = 1/
√

2.72 + 1.32

NHd
= 1/

√
2(0.12 + 5.82)

I = 1, · · · , |M |

mσ

Fπ/
√

2
= 4(4) (1)

mσ

mρ
= 0.5(5) (2)

(
mσ

Fπ/
√

2

)
= 3.6(3.3) (3)

mσ

(Fπ/
√

2)
= 0 ∼ 7

mσ/
(
Fπ/

√
2
)

= 0 ∼ 6

! 7
T 4

df
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π = c1mf + c2m2
f

mρ = c0 + c1mf + c1m2
f

mσ = c0 + c1mf

df
mπ → 0, Fπ = 0.031(1), mρ = 0.168(52)

df
mσ = 0.078(73)
mρ = 0.168(52)

at mf = 0
4π/g2 = 24 at MGUT = 2.0 × 1016

parameter range : −10 < nij < 10

y6 y7 (4)

1

P (t, x) = ψ̄(t, x)γ5ψ(t, x)

PR = ZP P

Introduce ”smell” → ψa
α(x) : Nc × Ns(= Nc) matrix

NHu = 1/
√

2.72 + 1.32
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mσ = c0 + c1mf
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mπ → 0, Fπ = 0.031(1), mρ = 0.168(52)

df
mσ = 0.078(73)

1



Summary



Summary
•Many flavor SU(3) gauge theory is being investigated.
•In this talk, We focus on the Nf=8 and 12 case. 

•We measure the flavor singlet scalar mass.
Using the noise reduction technique with high statistics(O(10000)), 
we obtain a good signal of fermion bilinear operator and good plateau from 
disconnected diagrams.

The resulting mass for flavor singlet scalar is as light as pion.
The situation is different from usual QCD (Nf=2,2+1) results.

We estimate the chiral limit mass by simple polynomial fit.
In the chiral limit,  mσ/(F!/"2)=3.6(3.3). (statistical error only) 
It is a good candidate of the walking technicolor model.

Future work (many things to do)
careful study of chiral limit extrapolation, discritization errors, finite volume effects,
study of decay width (dilaton decay constant), 
consistency check of the LHC results 
Comparison with Nf=4 QCD
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