Dark Matter and Entropy Production in the vMSM

Kazuhiro Takeda

(Niigata University)

In collaboration with Takehiko Asaka (Niigata University)

Summer Institute 2013 17-23, August 2013, Korea

Introduction

■ Problem of the Standard Model

Neutrino mass **Dark Matter** BAU

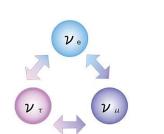
Universe content visible matter 5% dark matter 27% dark energy 68%

■vMSM (Neutrino minimal standard model)

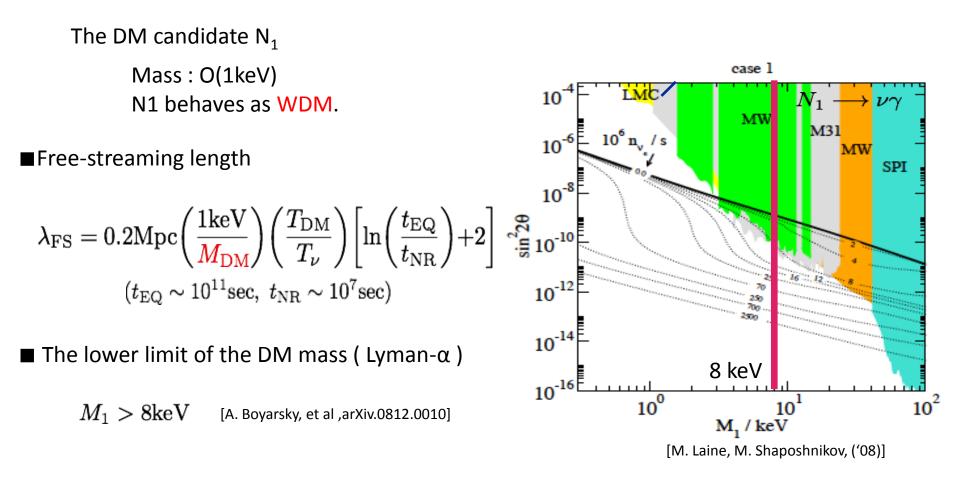
vMSM: SM + 3 right-handed neutrinos ($v_{\rm R}$)

$$\mathcal{L}_{
u\mathrm{MSM}} = \mathcal{L}_{\mathrm{SM}} + \overline{
u}_R i \partial_\mu \gamma^\mu
u_R - F_{lpha I} \overline{L}_lpha ilde{\Phi}
u_{RI} - rac{1}{2} (M_M)_{IJ} \overline{
u}^c_{RI}
u_{RJ} + h.c.$$

Seesaw mechanism

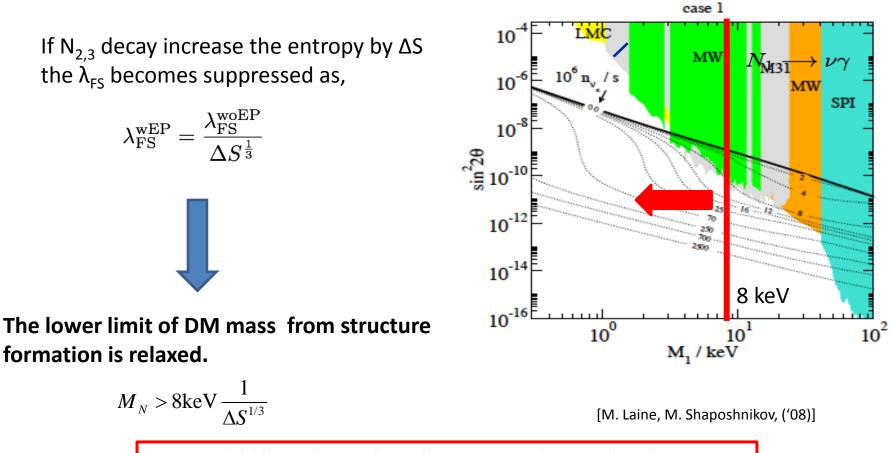

 $|M_D| = |F\langle \Phi \rangle| \ll M_M < \Lambda_{\rm EW} \sim \mathcal{O}(100 {\rm GeV})$

3 heavy neutrino


 N_1 is DM candidate N_2 , N_3 explain neutrino mass and BAU

Purpose of study : Impact of entropy production by N_{2,3} decay on DM physics in the vMSM

[T.Asaka, S.Blanchet, M.Shaposhnikov ('05), T.Asaka, M.Shaposhnikov ('05)


Motivation 1 – Constraint on DM candidate

Considering the X-ray and Lyman- α constraints, the allowed region of DM is very limited.

Motivation 1 – Impact of Entropy Production

There is a possibility that the entropy production is induced by the $N_{2,3}$ decay before BBN.

We would like to know how large ΔS is obtained in the vMSM.

Motivation 2 – Evaluation of the previous work

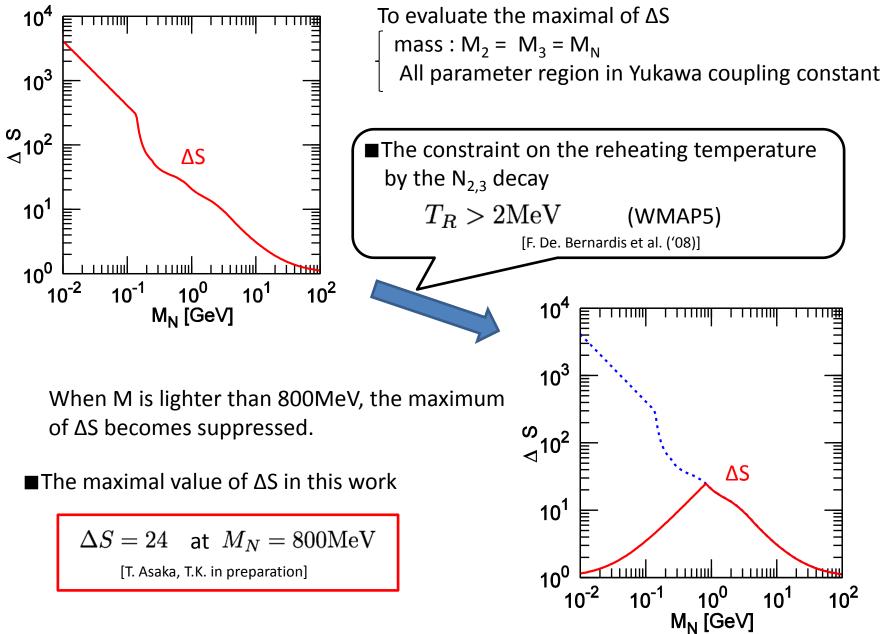
Evaluation of the entropy production rate ΔS in the vMSM have been carried out.

[T.Asaka, M. Shaposhnikov, A. Kusenko ('06) }

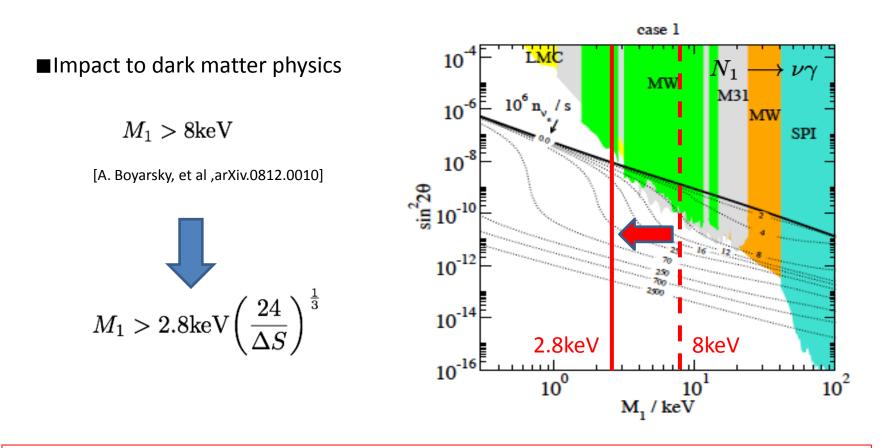
The maximal value of ΔS in the previous work

•
$$\Delta S = 29 \left[T_R > 0.7 \text{MeV} \right]$$

• $\Delta S = 10$ ($T_R > 4 {
m MeV}$)


However, there were the unsatisfactory points.

- Evaluation of the lifetime of the N_{2,3} was incomplete.
 (In particular the decay modes into meson were not included.)
 Only specific Yukawa coupling constant is considered.


We would like to solve these points.

- All decay modes Including the decay into meson. (example : N →πν, Kl, Bl)
 All parameter region in the Yukawa coupling constant .

Results

Results

The lower limit of DM mass is relaxed and the allowed region of DM becomes wider.

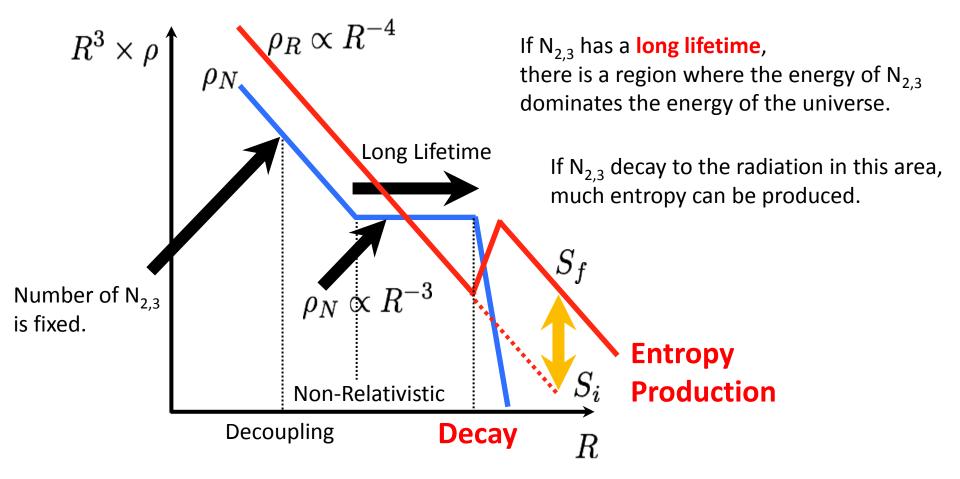
Summary

In this talk, We discussed **the Entropy Production** by $N_{2,3}$ decay in the vMSM.

■In the Evaluation of the Entropy Production

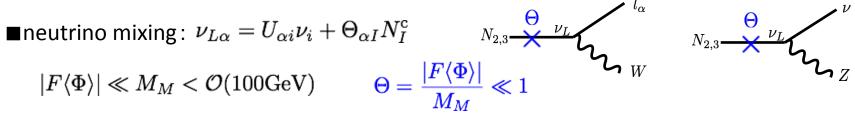
•We calculated the decay width for the possible decay modes of $N_{2,3}$.

• We evaluated ΔS with all free parameter in the Yukawa coupling constant.

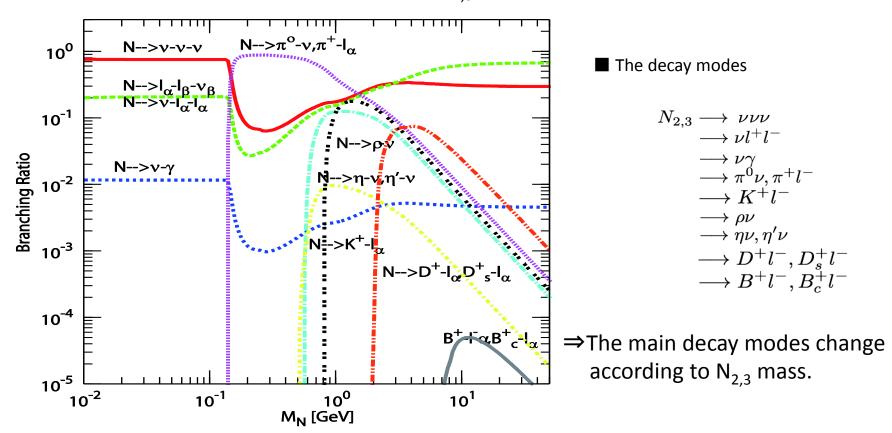

Results

- By constraint from the cosmic background radiation, we got $\Delta S < 24$.
- The DM mass limit is relaxed by the influence to free-Streaming length.
- By the entropy production, the baryon number asymmetry and the dark matter abundance are diluted. These values have to be produced more larger by ΔS .

Back Up


The Entropy Production by N_{2,3} Decay

Consider the case that $N_{2,3}$ decoupled from heat bath and behave Non-relativistic.


We had better check if $N_{2,3}$ lifetime is sufficiently long to evaluate the produced entropy of the universe.

Decay of N_{2,3}

In the vMSM, $N_{2,3}$ has a weak interaction that suppressed by mixing matrix Θ .

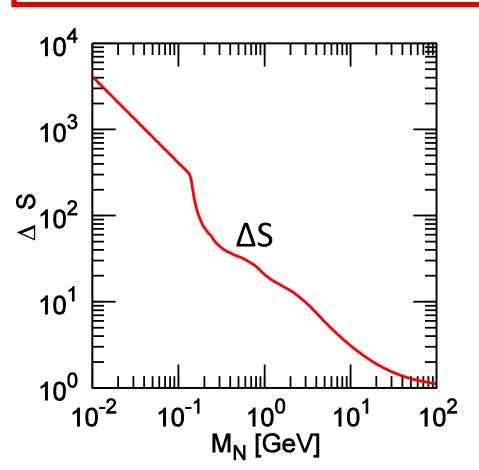
 \Rightarrow We can expect that N_{2,3} lifetime is sufficiently long.

Upper limit of N_{2,3} lifetime

We have to fix Yukawa coupling constant and $N_{2,3}$ mass to calculate their lifetime.

N_{2,3} mass:
$$M_{N2} = M_{N3} = M_N$$

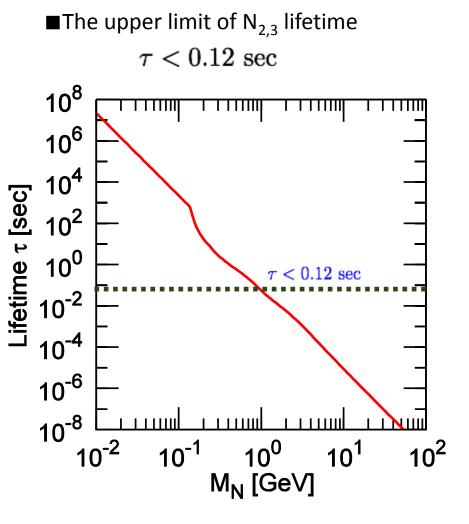
Yukawa coupling : Consider all free parameter region
The rough behavior of lifetime τ
The rough behavior of lifetime τ
The rough behavior of lifetime τ
 $\tau \propto -\begin{bmatrix} |\Theta|^{-2}M_N^{-5}(3-\text{body decay}) \\ |\Theta|^{-2}M_N^{-3}(2-\text{body decay}) \\ |\Theta|^{-2}M_N^{-3}(2-\text{body decay}) \end{bmatrix}$
If N_{2,3} mass is light, their lifetime is sufficiently long.

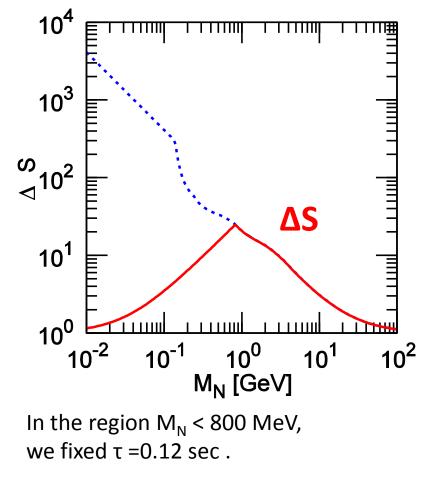

M_N [GeV]

Evaluation of The entropy Production rate

■The Evaluation formula of entropy production rate in the vMSM

$$\Delta S = \frac{S_f}{S_i} = \left[1 + \left(\frac{1.37 \, \boldsymbol{\tau}}{M_{pl} \left(\frac{g_*(T_D)}{M_N} \right)^2} \right)^{\frac{2}{3}} \right]^{\frac{3}{4}} \propto (M_N^2 \, \boldsymbol{\tau})^{\frac{1}{2}}$$


T_D: temperature of N_{2,3} decoupling [R.J. Scherrer, M.S. Turner, Phys. ReV. D31 (1985) 681]


Assumption : $g_*(T_D) \approx 10.75$

In the region where $N_{2,3}$ mass is light, a lot of Entropy is produced.

Constraint from the cosmic background radiation

In the vMSM, the upper limit of $N_{2,3}$ lifetime is lower than 0.12s in the region $M_N > 800$ MeV.

The upper limit of ΔS

 $\Delta S < 24$ [T. Asaka, T.K. ('13)] The Yukawa coupling constant

$$F = \frac{i}{v} U D_v^{1/2} \Omega D_N^{1/2}$$

U : PMNS matrix (3 mixing angles and 2 CP phases)

$$\begin{split} D_{\nu} &= \operatorname{diag}(m_1, m_2, m_3) \quad (\text{m is the mass of light neutrinos.}) \\ D_{N} &= \operatorname{diag}(M_2, M_3) \quad (\text{M is the mass of heavy neutrinos.}) \\ \Omega_{\mathrm{NH}} &= \begin{pmatrix} 0 & 0 \\ \cos \omega - \sin \omega \\ \xi \sin \omega \xi \cos \omega \end{pmatrix} \quad \Omega_{\mathrm{IH}} = \begin{pmatrix} \cos \omega - \sin \omega \\ \xi \sin \omega \xi \cos \omega \\ 0 & 0 \end{pmatrix} \end{split}$$

Free parameter : M2, M3, Re ω , Im ω , ξ , Dirac phase, Majorana phase