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Motivation — why do we need
fast RF parameter estimation?

2012-16 Development Phase

. Develop a Project Plan for a
: staged implementation in

. agreement with LHC findings;
further technical developments

: with industry, performance

. studies for accelerator parts and
. systems, as well as for detectors.
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2016-17 Decisions

On the basis of LHC data
and Project Plans (for
CLIC and other potential
projects), take decisions
about next project(s) at
the Energy Frontier.

| 2017-22 Preparation Phase

Finalise implementation parameters,
Drive Beam Facility and other system
verifications, site authorisation and
preparation for industrial
procurement.

Prepare detailed Technical Proposals

i for the detector-systems.

2023-2030 Construction
Phase

Stage 1 construction of a

500 GeV CLIC, in parallel with
detector construction.
Preparation for implementation
of further stages.
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2022-23 Construction Start
Ready for full construction
and main tunnel excavation.

2030 Commissioning

From 2030, becoming ready
for data-taking as the LHC
programme reaches |
completion. :
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Motivation — why do we need

fast RF parameter estimation?
CLIC CDR presented initial CLIC design

. 2012-16 Development Phase
5 Develop a Project Plan for a

staged implementation in It i§ now time to refine t_his,
- agreement with LHC findings; taking new knowledge into account

: further technical developments
: with industry, performance

studies for accelerator parts and j PartiCIe phySiCS

; systems, as well as for detectors.

High gradient physics
Cost models, new ideas etc.
Will lead to a new CLIC overall design

Main beam accelerating structure

- performance a significant factor
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Motivation — why do we need

fast RF parameter estimation?
. » CLIC CDR presented initial CLIC design

- High gradient physics
— Cost models, new ideas etc.

-l 7 & | Will lead to a new CLIC overall design




Basic idea
Scan over large number of candidate RF structures

Quick estimation of RF structure performance

Input: Structure parameters
(length, aperture, tapering, gradient, beam
current...)

Data: Pre-calculated single-cell parameters
Output:

Power requirements

Breakdown constraints

Long range wakefields
Based on analytic method [1]

Implemented as C++ library



. along structure
Interpolated “anchor” cells

Calculating main mode parameters
9

Step 1: Get Q, R/Q, v

A

(ap1|s 1xau)
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Interpolate Q, R/Q, v, ...
from anchor cells along the structure
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Cell database:
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Calculating main mode parameters
Step 2: Solve power flow integrals_

_ (prev. slide)
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Results:
How good are the estimates?

Remember:

This is only 1St step of RF design
Used to decide length and iris parameters
Step 2: Detailed optimization of “anchor” cells
Step 3: Full design including couplers etc.
Effects of couplers hard to take into account

With compact couplers:
Assume the coupler cells = normal cells

Compare results with other codes and later stages of design

Correctness — compare to MATLAB / PYTHON code
Prediction quality — compare to 2" and 3 design level



Correctness of power flow calculation
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Consistency through design levels

Design level Input power [MW] Filling time [ns]
1t — Cells from data base 40.0 56
2" — Hand-optimized cells 41.1 59
3" — Full RF design 42.2 *
(HFSS)

CLIC_G with 24 regular cells
Power to reach 100 MV/m unloaded gradient

*) HFSS yields filling time of
64.55 ns including matching cells,
which adds 27 mm to the length.



Long range wakefield estimate

The first dipole mode in
each cell is estimated, then

— W]

summed across cells 10 — Envelope |
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Long range wakefield estimate

AssumlngamaXImumWake ::i:::::::::::::::::::::;.;.'wlll.l.
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envelope of 6.6 \V/pC/m/mm ""”ﬂ“rw
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Minimum bunch distance
given wake limit extracted

For CLIC_G, we get Wi
6 RF cycles as expected W07
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RF constraints — basic idea

At a given breakdown rate, find maximum pulse length t
constrained by peak field quantities and temperature

t defined as time where P > 85% of peak power

At BDR < 10°/ pulse / m:

ES *t < 220% (MV/m)®* 200 ns — 2508 (MV/m)é* 200 ns
SC?’ *1<4.0° (MW/mm?)* * 200 ns — 5.0° (MW/mm?)3 * 200 ns

(P/C)**t < 2.3 (MW/mm)3 * 200 ns — 2.9° (MW/mm)3 * 200 ns
AT (t)=C*H’ f 7 Pt ) - dt' <50 K

{—
Empirical constraints based on high-power RF-tests

Uncertainties important due to high exponents
Will use conservative values unless otherwise noted
Solve these equations for t

Pick the smallest as the overall maximum pulse length

Subtract the “wasted” time to get the beam time



RF constraints — basic idea

At a given breakdown rate, find maximum pulse length t
constrained by peak field quantities and temperature

t defined as time where P = 85% of peak power
At BDR < 10°/ pulse / m:
ES * t < 220% (MV/m)®* 200 ns — 2508 (MV/m)®* 200 ns
No data from & 7y I yy/mme--206-Rem=5-05 MV * 200 ns

'old database
' (P/C)® *t < 2.33 (MW/mm)3 * 200 ns — 2.93 (MW/mm)3 * 200 ns
AT(t):C*I:IZ*f; P(t) dt'<50 K

Vi—t'
Empirical constraints based on high-power RF-tests

Uncertainties important due to high exponents
Will use conservative values unless otherwise noted

Solve these equations for t

Pick the smallest as the overall maximum pulse length
Subtract the “wasted” time to get the beam time
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Test optimization:

Beam time vs. structure length

CLIC_G,
2" level design "

Varying number

of cells (stretch it!) swor

G, = 100 MV/m
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Test optimization:
Beam time vs. structure length
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Test optimization:

Beam time vs. structure length

CLIC_G,
2" level design
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Constant
Impedance
structure

26 cells,
120°,
11.9942 GHz

L=216 mm =

100 MV/m
1.92 A

Choose:
a=2.9mm

Test optimization:
Aperture scan
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Test optimization:
Aperture scan

Constant 20
Impedance
structure

26 cells, 15|

120°,
11.9942 GHz _

L =216 mm
100 MV/m
1.92 A

Choose:
a=2.9mm
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Test optimization:
Aperture scan

Constant 20
Impedance
structure
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Choose:
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Test optimization:
Aperture tapering scan

Keeping
a=2.9mm,
Introducing a
front-to-back
linear iris tapering

Constant Iris
thickness

Assume optimum
Aa =1.75mm
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Test optimization:

Aperture ta

Keeping
a=29mm,
Introducing a
front-to-back
linear iris tapering

Constant Iris
thickness

Assume optimum
Aa =1.75mm
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Keeping
a=2.9mm,

Introducing a

front-to-back

linear iris tapering

Constant Iris
thickness
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Test optimization:
Aperture tapering scan
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The cell data base

Interpolating the “anchor cells”
from pre-calculated cells

Today these are scaled

from 30 GHz cells
a/\

No S_information 007 011  0.15

Want to have
re-optimized data base

High gradient optimization
of large number of cells

Main mode calculation
In Omega3P

Assisted by software [2]

Time domain wakefield
calculation using T3P
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Main mode calculation
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The cell data base

Interpolating the “anchor cells”
from pre-calculated cells

Today these are scaled
from 30 GHz cells
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of large number of cells

Main mode calculation
In Omega3P
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The cell data base

Interpolating the “anchor cells”
from pre-calculated cells

Today these are scaled
from 30 GHz cells

No S_ Information

Want to have
re-optimized data base

High gradient optimization
of large number of cells

Main mode calculation
In Omega3P

Assisted by software [2]

Time domain wakefield
calculation using T3P

Scan variable 1:
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The cell data base

Interpolating the “anchor cells”

from pre-calculated cells
Today these are scaled
from 30 GHz cells

No S_ information 51'4_
Want to have |
I’e-OptImlzed data base 1.2r 0.000368

0.000352

High gradient optimization | | | |
of large number of cells

- Main mode calculation
In Omega3P

- Assisted by software [2]

- Time domain wakefield
calculation using T3P




The cell data base

Interpolating the “anchor cells”

from pre-calculated cells

Today these are scaled
from 30 GHz cells

No S_ Information

Want to have
re-optimized data base

High gradient optimization
of large number of cells

Main mode calculation
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Assisted by software [2]

Time domain wakefield
calculation using T3P
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Summary and conclusions

Have developed tool for estimating RF structure parameters

Results match well with final HFSS design
More work needed to define breakdown limits

Scaling laws and their constants
Building of new cell database in progress

Have tool to do this
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The cell database:
Frequency scaling, data range

Q' =sgrt(f/f')*Q
R/Q = f/f* R/Q
f'r="frf*f

A= (FIf)2A

a' = f/f*a

h' = f/f*h

a/lamda = {0.07, 0.11, 0.15,
0.19, 0.23}

d/h = {0.1, 0.25, 0.4}
dsi = {120°, 150°}
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The cell data base — cell interpolation
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The cell data base — cell interpolation

8 .
— MATLAB
7Ll == C++ compat
C++ linear
6Ll *+ * Database

Group velocity [% c]
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Scaling the data to 200 ns, 1e-6 bpp/m

Eacc @ tp=200 ns, BDR=1e-6 bpp/m

For rectangular pulse of length t

ABIpNI9 'y AQ sapI|S

For a fixed pulse length For a fixed BDR

BDR Q Ea/EyG = const
30 5

E: @p

BDR

= const

For pulse with a ramp (SW and
some of TW structures), effective
pulse length is used which is the
time when the

Pin(t) > 0.85 Pinmax

N.B. Brown and Green are new data points.

Dual Mode Cavity
SW1A2p75T2p0
SW1A3p75T 1p66
SW1A3p75T2p6
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50 100
Eacc [MV/m]

150

JS = Jiaru Shi; AG = Alexej Grudiev
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Maximum surface electric and magnetic fields

Es @ tp=200 ns, BDR=1e-6 bpp/m

Dual Mode Cavity
SW1A2p75T2p0
SW1A3p75T1p66
SW1A3p75T2p6
SW1ASp65T4p6

C10 vg0.7
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0 100 200 300 400
Es [MV/m]

Hs @ tp=200 ns, BDR=1e-6 bpp/m
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Power flow related quantities: Sc and P/C

sqrt(Sc) @ tp=200 ns, BDR=1e-6 bpp/m

Dual Mode Cavity
SW1A2p75T2p0
SW1A3p75T1p66
SW1A3p75T2p6
SW1A5p65T4p6
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C10 vgi1.35
TD24 SLAC Rev
TD24 KEK_Qut
TD24 KEK In
T24 KEK Out
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T18VG2.6-In
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HDX11
H60VG4R17
H75VG4R18
H60VG3R17
H60VG3R18
H60VG3
HI9OVG3
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D51

0.5 1 1.5 y,
sqrt(Sc6) [sqrt(MW)/an]

2.5

sqrt(P/C) @ tp=200 ns, BDR=1e-6 bpp/m

Dual Mode Cavity
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sqrt(P/C) [sqrt(MW/mm)]]

Sc=4-5MW/mm2

P/C=2.3-2.9 MW/mm




Summary on the high-power RF
constraints

RF breakdown and pulsed surface heating constraints used for CLIC_G design
(2007):

* Esmax < 250 MV/m
* Pin/Cin=(tpP)1/3 = 18 MW-ns1/3/mm
* ATmax(Hsmax, tp) < 56 K

ABIpNIS 'y Aq sapls

Optimistic RF breakdown and pulsed surface heating constraints for BDR=10-6
bpp/m:

* Esmax (tpP)1/6 < 250 MV/m - (200ns)1/6
* Pin/Cin=(tpP)1/3 < 2.8 MW/mm - (200ns)1/3 = 17 [Wu]
* Scmax *(tpP)1/3 < 5 MW/mm?2 - (200ns)1/3

and

* ATmax(Hsmax, tp) < 50 K

 Depending on degree of our optimism a safety margin has to be applied.
* Varying RF constraints in the optimization how much money one can save by
being optimistic.
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Power flow equations

AP Ww dv dw
— = — _G[=wW—<Y el
dz Q GI=W dz Y dz

G dv, v,| 2G dG G* d(RIQ)

:mR/Q dz  “|(R/Q) dz (RIQ) dz
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