Linac optimization *FAST estimation of RF structure parameters*

Kyrre Sjobak June 5th, 2013 HG2013 @ Trieste

Outline

- Motivation and basic idea
- Method:
	- How it works
	- Benchmarking main mode results
	- Wakefield
	- High gradient limits
- Optimization examples
- The underlying data
	- Single cell high gradient optimization
- Summary

Motivation – why do we need fast RF parameter estimation?

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start Ready for full construction

and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction. Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

From Steinar / Daniel **Cancer** From Steinar / Daniel **Cancer** Contract Contrac

Motivation – why do we need fast RF parameter estimation?

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

- CLIC CDR presented initial CLIC design
- It is now time to refine this, taking new knowledge into account
	- Particle physics
	- High gradient physics
	- Cost models, new ideas etc.
- Will lead to a new CLIC overall design
- Main beam accelerating structure performance a significant factor
	- Optimal pulse length, gradient, efficiency
	- From Steinar / Daniel – RF structure length
- the Energy Frontier. **Example 20 Fig. 2016 Beam current**

Motivation – why do we need fast RF parameter estimation?

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

- CLIC CDR presented initial CLIC design
- It is now time to refine this, taking new knowledge into account
	- Particle physics
	- High gradient physics
	- Cost models, new ideas etc.
- Will lead to a new CLIC overall design

From Steinar / Daniel Main beam accelerating structure performance a significant factor **Pulse length,** gradient, efficiency
F structure de gt. – RF structure length the Energy Frontier.
 Exam current \overline{C} **Current Estimate a significant later**
 Estimate a significant laters

Basic idea

- Scan over large number of candidate RF structures Quick estimation of RF structure performance
	- Input: Structure parameters (length, aperture, tapering, gradient, beam current...)
	- Data: Pre-calculated single-cell parameters
	- Output:
		- Power requirements
		- **Breakdown constraints**
		- Long range wakefields
- Based on analytic method [1]
- Implemented as C++ library

Results: How good are the estimates?

- Remember:
	- This is only $1st$ step of RF design
		- Used to decide length and iris parameters
		- Step 2: Detailed optimization of "anchor" cells
		- Step 3: Full design including couplers etc.
	- Effects of couplers hard to take into account
		- With compact couplers:
			- Assume the coupler cells \simeq normal cells
- Compare results with other codes and later stages of design
	- Correctness compare to MATLAB / PYTHON code
	- Prediction quality compare to 2^{nd} and 3^{rd} design level

Correctness of power flow calculation

Consistency through design levels

- CLIC G with 24 regular cells
- Power to reach 100 MV/m unloaded gradient

*) HFSS yields filling time of 64.55 ns *including matching cells,* which adds 27 mm to the length.

COA

Long range wakefield estimate

The first dipole mode in each cell is estimated, then summed across cells

$$
W_{T}(z) = \frac{-1}{N} \sum_{N} W_{i}(z)
$$

$$
W_{i}(z) = A_{i} \exp\left(\frac{-\omega_{i}t}{2Q}\right) \sin\left(\omega_{i}t\sqrt{1 - \frac{1}{4Q^{2}}}\right)
$$

- No coupling between cells
- Envelope found numerically by linear interpolation between peaks

Long range wakefield estimate

- Assuming a maximum wake envelope of 6.6 V/pC/m/mm
	- From beam dynamics
- **Minimum bunch distance** given wake limit extracted
- For CLIC G, we get 6 RF cycles as expected

RF constraints – basic idea

At a given breakdown rate, find maximum pulse length t constrained by peak field quantities and temperature

– t defined as time where P ≥ 85% of peak power

- At BDR $\leq 10^{-6}$ / pulse / m:
	- Ê⁶ * t ≤ 220⁶ (MV/m)^{6 ×} 200 ns 250⁶ (MV/m)^{6 ×} 200 ns
	- Ŝ c 3 * t ≤ 4.0 3 (MW/mm²) 3 * 200 ns $-$ 5.0 3 (MW/mm²) 3 * 200 ns

-
$$
(P/C)^3 * t \le 2.3^3
$$
 (MW/mm)³ * 200 ns - 2.9³ (MW/mm)³ * 200 ns
- $\Delta T(t) = C * \hat{H}^2 * \int_0^t \frac{P(t)}{\sqrt{t - t'}} dt' \le 50 K$

- Empirical constraints based on high-power RF-tests
	- Uncertainties important due to high exponents
	- Will use conservative values unless otherwise noted
- Solve these equations for t
	- Pick the smallest as the overall maximum pulse length
	- Subtract the "wasted" time to get the beam time

RF constraints – basic idea

At a given breakdown rate, find maximum pulse length t constrained by peak field quantities and temperature

– t defined as time where P ≥ 85% of peak power

- At BDR $\leq 10^{-6}$ / pulse / m:
	- Ê⁶ * t ≤ 220⁶ (MV/m)^{6 ×} 200 ns 250⁶ (MV/m)^{6 ×} 200 ns

No data from old database

- $\hat{\mathsf{S}}_{c}$ ³ * t ≤ 4.0³ (MW/mm2)^{3 ±} 200 ns = 5.0³ (MW/mm²)^{3 *} 200 ns
- (P/C)³ * t ≤ 2.3³ (MW/mm)³ * 200 ns 2.9³ (MW/mm)³ * 200 ns $- \Delta T(t) = C * \hat{H}^2 * \int_0^t$ *^t P*(*t*) √*t*−*t ' dt '*≤50 *K*
- Empirical constraints based on high-power RF-tests
	- Uncertainties important due to high exponents
	- Will use conservative values unless otherwise noted
- Solve these equations for t
	- Pick the smallest as the overall maximum pulse length
	- Subtract the "wasted" time to get the beam time

Test optimization: Beam time vs. structure length

Test optimization: Beam time vs. structure length

Test optimization: Beam time vs. structure length

- CLIC G, 1000 2nd level design
- **Varying number** of cells (stretch it!) 800
- $G_{L} = 100 \text{ MV/m}$
- $I = 1.92 A$
- t_{beam} [ns] Uncertainty in breakdown limits

Test optimization: Aperture scan

Test optimization: Aperture scan

Test optimization: Aperture scan

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

- Interpolating the "anchor cells" from pre-calculated cells
- Today these are scaled from 30 GHz cells
- $\bullet\vert$ No S_c information
- Want to have re-optimized data base
- **High gradient optimization** of large number of cells
	- Main mode calculation in Omega3P
	- Assisted by software [2]
	- Time domain wakefield calculation using T3P

Summary and conclusions

- Have developed tool for estimating RF structure parameters
	- Results match well with final HFSS design
- More work needed to define breakdown limits
	- Scaling laws and their constants
- Building of new cell database in progress
	- Have tool to do this

References

[1] Analytical solutions for transient and steady state beam loading in arbitrary traveling wave accelerating structures A. Lunin, V. Yakovlev and A. Grudiev

[2] SURFACE FIELD OPTIMIZATION OF ACCELERATING STRUCTURES FOR CLIC USING ACE3P ON REMOTE COMPUTING FACILITY K. Sjobak, A. Grudiev and E. Adli

Thank you for your attention!

BACKUP SLIDES Here may be dragons...

http://www.flickr.com/photos/jrobblee/4702245780

The cell database: Frequency scaling, data range

- $Q' =$ sqr t(f/f') $* Q$
- $R/Q = f/f * R/Q$
- $f_w' = f'/f * f_w$
- $A_w' = (f'/f)^3 A_w$
- $a' = f/f'^*a$
- $h' = f/f'^*h$

 a /lamda = {0.07, 0.11, 0.15, 0.19, 0.23}

field

- d/h = ${0.1, 0.25, 0.4}$
- $dsi = {120^{\circ}, 150^{\circ}}$

The cell data base – cell interpolation

The cell data base – cell interpolation

Scaling the data to 200 ns, 1e-6 bpp/m

N.B. Brown and Green are new data points. JS = Jiaru Shi; AG = Alexej Grudiev

Maximum surface electric and magnetic fields

<u>Slig</u> ወ ທ $\overline{\mathbf{C}}$ \prec A. ດ
ລ die
Die

 $\,<$

Power flow related quantities: Sc and P/C

<u>Slig</u> ወ ഗ $\overline{\mathbf{C}}$ \prec A. G r u a
Gi

 $\,<$

Summary on the high-power RF constraints

- RF breakdown and pulsed surface heating constraints used for CLIC_G design (2007):
- $E₅$ max $<$ 250 MV/m
- Pin/Cin**·**(tpP)1/3 = 18 MW·ns1/3/mm
- Δ Tmax(Hsmax, tp) < 56 K

Optimistic RF breakdown and pulsed surface heating constraints for BDR=10-6 bpp/m:

- Esmax **·**(tpP)1/6 < 250 MV/m · (200ns)1/6
- Pin/Cin**·**(tpP)1/3 < 2.8 MW/mm · (200ns)1/3 = 17 [Wu] <u>ନା</u>
	- Scmax **·**(tpP)1/3 < 5 MW/mm2 · (200ns)1/3

and

<u>Slig</u> ወ $\mathcal O$ $\overline{\mathbf{C}}$ \prec A.

> o
Gi $\,<$

- Δ Tmax(Hsmax, tp) $<$ 50 K
- Depending on degree of our optimism a safety margin has to be applied.
- Varying RF constraints in the optimization how much money one can save by being optimistic.

Power flow equations

