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fast RF parameter estimation?

From Steinar / Daniel

● CLIC CDR presented initial CLIC design

● It is now time to refine this,
taking new knowledge into account

– Particle physics

– High gradient physics

– Cost models, new ideas etc.
● Will lead to a new CLIC overall design

● Main beam accelerating structure 
performance a significant factor

– Optimal pulse length,
gradient, efficiency

– RF structure length
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Basic idea
● Scan over large number of candidate RF structures
● Quick estimation of RF structure performance

– Input: Structure parameters
(length, aperture, tapering, gradient, beam 
current...)

– Data: Pre-calculated single-cell parameters
– Output:

● Power requirements
● Breakdown constraints
● Long range wakefields

● Based on analytic method [1]
● Implemented as C++ library



  

Calculating main mode parameters
Step 1: Get Q, R/Q, v

g
, ... along structure
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Interpolated “anchor” cells

Interpolate Q, R/Q, v
g
, ...

from anchor cells along the structure

L = N*h

ETC.

Global structure parameters:
Length, phase advance,

aperture, ...

Cell database:
Q, R/Q, ... for different

cell apertures, phase advance, ...
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Calculating main mode parameters
Step 2: Solve power flow integrals

ETC.

Power flow integrals

Power parameter calculation

Target gradient
Beam current

Power
Peak fields

Max beam time
estimation

High-gradient
limits, pulse shape

Max
beam time

(prev. slide) Efficiency



  

Results:
How good are the estimates?

● Remember: 

– This is only 1st step of RF design

● Used to decide length and iris parameters
● Step 2: Detailed optimization of “anchor” cells
● Step 3: Full design including couplers etc.

– Effects of couplers hard to take into account
● With compact couplers:

Assume the coupler cells ≃ normal cells
● Compare results with other codes and later stages of design

– Correctness – compare to MATLAB / PYTHON code

– Prediction quality – compare to 2nd and 3rd design level



  

Correctness of power flow calculation

● CLIC_G_R05 structure

– 100 MV/m loaded

● MATLAB:

– Numerical solution

– Solve at one point  
per cell

● Python / C++:

– Analytical solution

● Same average 
gradient, slightly 
different input power



  

Consistency through design levels

Design level Input power [MW] Filling time [ns]

1st – Cells from data base 40.0 56

2nd – Hand-optimized cells 41.1 59

3rd – Full RF design 
(HFSS)

42.2 *

● CLIC_G with 24 regular cells

● Power to reach 100 MV/m unloaded gradient

*) HFSS yields filling time of
64.55 ns including matching cells, 
which adds 27 mm to the length.



  

Long range wakefield estimate

● The first dipole mode in 
each cell is estimated, then 
summed across cells

– No coupling
between cells

● Envelope found numerically 
by linear interpolation 
between peaks

W T (z)=
−1
N ∑

N

W i(z)

W i(z)=A i exp(−ωi t

2Q )sin(ωi t √1−
1

4Q2 )



  

Long range wakefield estimate

● Assuming a maximum wake 
envelope of 6.6 V/pC/m/mm

– From beam 
dynamics

● Minimum bunch distance
given wake limit extracted

● For CLIC_G, we get
6 RF cycles as expected



  

RF constraints – basic idea
● At a given breakdown rate, find maximum pulse length t 

constrained by peak field quantities and temperature

– t defined as time where P ≥ 85% of peak power

● At BDR ≤ 10-6 / pulse / m:

– Ê6 * t ≤ 2206 (MV/m)6 * 200 ns – 2506 (MV/m)6 * 200 ns

– Ŝ
c
3 * t ≤ 4.03 (MW/mm2)3 * 200 ns – 5.03 (MW/mm2)3 * 200 ns

– (P/C)3 * t ≤ 2.33 (MW/mm)3 * 200 ns – 2.93 (MW/mm)3 * 200 ns

–

● Empirical constraints based on high-power RF-tests

– Uncertainties important due to high exponents

– Will use conservative values unless otherwise noted

● Solve these equations for t

– Pick the smallest as the overall maximum pulse length

– Subtract the “wasted” time to get the beam time

ΔT (t)=C∗Ĥ 2
∗∫0

t P (t)

√ t−t '
dt '≤50 K
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No data from
old database



  

Pulse shape at structure input

Pstart=P0 [1−√ vg

ωρ(0)P0

I∗gload(z)

g(z) ]

Beam present

Time counted for
high-gradient limits

P0

0.85 P0
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Test optimization:
Beam time vs. structure length

● CLIC_G,
2nd level design

● Varying number
of cells (stretch it!)

● G
L
 = 100 MV/m

● I = 1.92 A

● Uncertainty in 
breakdown limits
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Test optimization:
Aperture scan

● Constant 
impedance 
structure

● 26 cells,
120°,
11.9942 GHz

● L = 216 mm

● 100 MV/m

● 1.92 A

● Choose:
a = 2.9 mm
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Test optimization:
Aperture tapering scan

● Keeping
a = 2.9 mm, 
introducing a 
front-to-back 
linear iris tapering

● Constant iris 
thickness

● Assume optimum
Δa = 1.75mm
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a1 , d1

a2 , d2

a/λ

d/
h
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0.4
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● Interpolating the “anchor cells” 
from pre-calculated cells

● Today these are scaled
from 30 GHz cells

● No S
c
 information

● Want to have
re-optimized data base

● High gradient optimization
of large number of cells

– Main mode calculation
in Omega3P

– Assisted by software [2]

– Time domain wakefield 
calculation using T3P

The cell data base
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Summary and conclusions

● Have developed tool for estimating RF structure parameters

– Results match well with final HFSS design
● More work needed to define breakdown limits

– Scaling laws and their constants
● Building of new cell database in progress

– Have tool to do this
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Here may be dragons...

http://www.flickr.com/photos/jrobblee/4702245780



  

The cell database:
Frequency scaling, data range

● Q' = sqr t( f
 
/f' ) * Q

● R/Q = f'/f * R/Q

● f
w
' =  f'/f * f

w

● A
w
' = (f'/f)³ A

w

● a' = f/f'*a

● h' = f/f'*h

● a/lamda = {0.07, 0.11, 0.15, 
0.19, 0.23}

● d/h = {0.1, 0.25, 0.4}

● dsi = {120°, 150°}



  

The cell data base – cell interpolation

tt=1

t=0

t=2



  

The cell data base – cell interpolation

tt=1

t=0

t=2



Scaling the data to 200 ns, 1e-6 bpp/m  

For a fixed pulse length For a fixed BDR

For rectangular pulse of length tp

For pulse with a ramp (SW and 
some of TW structures), effective 
pulse length is used which is the 
time when the 

                      Pin(t) > 0.85 Pinmax 

N.B.  Brown and Green are new data points.
JS = Jiaru Shi; AG = Alexej Grudiev

consttE pa =⋅ 6/130~ aEBDR

const
BDR

tE pa =
⋅ 530

S
lides b y A

. G
r udiev



Maximum surface electric and magnetic fields

Waveguide
damped

Es = 220 - 250 MW/mm2 

S
lides b y A

. G
r udiev



Power flow related quantities: Sc and P/C

Sc = 4 - 5 MW/mm2 P/C = 2.3 – 2.9 MW/mm 

S
lides b y A
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r udiev



Summary on the high-power RF 
constraints

RF breakdown and pulsed surface heating constraints used for CLIC_G design 
(2007):

• Esmax < 250 MV/m
• Pin/Cin·(tpP)1/3 = 18 MW·ns1/3/mm
• ΔTmax(Hsmax, tp) < 56 K

Optimistic RF breakdown and pulsed surface heating constraints for BDR=10-6 
bpp/m:

• Esmax ·(tpP)1/6 < 250 MV/m · (200ns)1/6 
• Pin/Cin·(tpP)1/3 < 2.8 MW/mm · (200ns)1/3 = 17 [Wu]
• Scmax ·(tpP)1/3 < 5 MW/mm2 · (200ns)1/3 
and

• ΔTmax(Hsmax, tp) < 50 K

• Depending on degree of our optimism a safety margin has to be applied. 
• Varying RF constraints in the optimization how much money one can save by 

being optimistic.
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Power flow equations

P=W vg , W=
G2

(R /Q)ω
⇒

dP
dz

=−
W ω

Q
−G I=W

d vg

dz
+v g

dW
dz

=
G2

ω R /Q

d v g

dz
+

vg
ω [ 2G

(R /Q)

dG
dz

−
G2

(R /Q)
2

d (R /Q)

dz ]
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