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Plasticity of collective �
dislocation ensembles�
from stochastic to mean field�

•  Plastic response - controlled to a large extent by dislocations (slip, 
twinning) �

•  The stochatic nature of the underlying dislocations reactions is 
translated through average rates to a constitutive relation = 
deterministic relation between stress , strain, strain rate etc.�

•  Using Orowan equation – dislocation motion to strain �
(Δl between dislocation barriers, b -burgers vector)�

•  Assume V>>barrier crossing time thereor Δt between crossing is 
given by  1/ν1  �

�
•  By assuming a functional form for ΔG one gets a constitutive link 

between stress, T and strain rate. �

Also:	
  Steck	
  and	
  Gerdes,	
  acta	
  mechanica,	
  (1997)	
  

 Pi = ν i /ν0 →ν i ν0 exp −ΔG / kT( )

 

γ  ρdb
Δl
Δt
Vdis


 γ = γ 0 exp −ΔG / kBT( )⎯→⎯ ΔG = kBT ln γ 0 / γ( )



Dislocation mediated – self organized criticality�

Uchic, Shade & Dimiduk, Annual Review of Materials Research (2009).�
Dimiduk, Woodward, LeSar & Uchic: “Scale-Free Intermittent Flow in Crystal 
Plasticity.” Science  (2006) 1188.�
 �
�

Single crystal micro-pillar compression: �
Dislocation mediated intermittent flow - size effects, hardening.�
Dislocation density inside a plane as a controlling parameter.�
 �
�Direct quantitative analysis of strain 
bursts (~20 micron).�
Intermittency characterized by a 
universal Power law burst PDF�
Acoustic emissions: �
Similar + space and time coupling 
between events�
(Weiss & Marsan, Scjence 2003 )�
Earthquakes show similar PDF and 
spatio-temporal correlation �
(Kagan, Geopgysical J. (2007)�



Using dislocation dynamics to reproduce PDF�

Csikor,	
  Motz,	
  Weygand,	
  Zaiser	
  &	
  Zapperi,	
  “DislocaEon	
  Avalanches,	
  Strain	
  Bursts,	
  
and	
  the	
  Problem	
  of	
  PlasEc	
  Forming	
  at	
  the	
  Micrometer	
  Scale”	
  .	
  Science	
  (2007)	
  	
  

•  3D dislocation dynamics reproduce strain 
burst scaling �

•  where C is a normalization constant, τ is a 
scaling exponent, and s0 is the characteristic 
strain of the largest avalanches.�

•  Intermittency – as a result of dislocation 
Interactions. Stochastic nature a result of 
varying initial conditions.�

•  Avalanche is a 2D event, with an upper cutoff 
due to  structure and work-hardening. Strain 
is limited to about 10^-6 in a cm size sample.�

•  Recently (Chen, choi, papanikolaou & Sethna 
2010 to 2013): scaling of structures using an 
advanced CDD code. �

P s( ) = Cs−τ exp − s / s0( )2⎡
⎣

⎤
⎦



Spatial phase field modeling �
•  Using deterministic spatial model: �

o  spatial phase filed leads to complex geometrical and topological transitions: 
forest hardening, multplication, slip bands �
Koslowski, Cuitino and Ortiz, J. Mech & Phys solids 2002�

o  Complex governing equations. Leads to intermittent response and reproduces 
experimentally observed avalanche scaling laws.�

o  Behavior reproduced by moving from a fully 3D system to a 1D “in slip plane” 
model.  (Koslowski phil. Mag. 2003)�

•  Modifications �
o  Modifications – such as: Introduction of Explicit fluctuations as a function of 

dislocations density (Zaiser & Moretti, J stat Mech 2005)�
o  The main aim here is analytical tractability�

Physics	
  Rep.	
  (2007)	
  113	
  

Review	
  of	
  all	
  methods:	
  



Mean field models for critical depining �

•  Reproduce strain rate variation by 
modifying the mean field picture to 
include a competing relaxation 
mechanism. This lead to oscillation in 
avalanche size. (nature, 2012)�

•  Using a mean field model for interface 
depining and by solving Fokker-Planck eq. 
reproduced the power law decay of 
avalanche size and maximal velocity�

dV
dt

= −kV + Fc + Vξ t( )



Relation to creep model �
•  In nano-crystalline systems radiation 

induced creep (due to point defect 
generation) can be significantly reduced.�
(Tai, Averback, Bellon and Ashkenazy�
Scripta Mat. (2011))�

�
�
•  We showed (using mean field model and 

atomistic simulations) that de-pining in 
grain boundaries by point defects can 
lead to radiation induced creep and 
reproduced experimental dependency. 
Controlling these de-pining events may 
allow increased IIC.�
(Ashkenazy & averback Nanoletters 2012)�

•  Response in GB to external stress shows 
a distribution of depining events.�



What are we trying to do…�
•  Use stochastic theory to allow for: �

o  transferability of failure scenario analysis (across drive conditions)�
o  Identify controlling mechanisms�
o  Define critical experiments  - model development / verification �
Such models serve as a link between the microscopic, short time scale problem 
which is accessible via simulation to the measured system to the real life 
scenario.�

For now – demonstrate the basic method using a 
“spherical horse” model.�

�

Not trying to do (at this stage):�
Create a comprehensive consistent microscopic model�
Describe the “real” mechanism at work �
Link to “state of the art” DDD model.�



1
τ RBD

≈ exp E2ΔV / kBT( )⎡⎣ ⎤⎦



Formulation of a “well-mixed” 0d model�
•  Assumptions: �

o  Breakdown currents are driven by formation of surface extrusion/intrusions.�
o  Surface protrusions are formed due to multiple dislocation reaction leading to 

local �
o  Sub-breakdown surface protrusion are not identified (Is that true?). �

Therefor we assume that gradual protrusion accumulation does not control 
breakdown: �
•  surface relaxation, interaction between various slip systems, protrusion-

dislocation interaction…�
•  Field conditions are translated to an applied stress �

(AC thermal gradients ~ 100 Mpa, dc?) �
�

•  Suggested controlling parameter  - �
the number of mobile dislocations inside a band.�
o  If large amount of dislocations reach the surface in unison – an instant 

extrusion/intrusion may lead to breakdown.�
o  We avoid spatial interaction and assume gain-loss dynamics inside a specific 

band.�



dn
dt

n
n* nc

The master equation  
 
 
 
can lead to bifurcation:  
a metastable state and a critical one. 
 
We look for the quasi-stationary probability distribution function 
And the probability to cross the critical point (reach extinction)  

   
Pn = ρn−1

+ Pn−1 + ρn+1
− Pn+1 − ρn

+ + ρn
−( )Pn

General gain-loss type Markovian processes 

    n-1   n   n+1  1

1

n

n

n n

n n

ρ

ρ

+

−

→ +

→ −

   
P = 0 ⇒ P(n) ≡ P(ρN ) ~ e−N [S (ρ )+O(1/ N )]

Approximate solution based on WKB theory with 1/N being the 
small parameter. 

Assaf and Meerson, PRE 2010  

Rates for transition between states 



•  Define the “in-plane” density (in units of 1/nm).


•  External stress (due to temp gradient on surface), range 

of 0.1 Gpa.


•  Mobile dislocations can increase in number due to stress 

gradient (the driving force) as well as thermal activation 
of the multiplication reaction






•  Moving dislocations can become sessile at:



o  Pre-existing barriers ( concentration - C )


o “collisions” with other moving dislocations



•  Properties dependence:


o Velocity increase with stress, independent of the number of moving dislocations


o Stress increase with dislocation content 







“Minimal” model�

dρ+

dt
= ν0µA σ ρ( )( )k e− φ0−σΩ( )/kBT

dρ−

dt
= ρV σ( )c + ρ2V σ( )ρ

σ =σ E + µρb V = Bν0b
2σ



Model characteristics�

Stable	
  point:	
  
DislocaEon	
  generaEon	
  and	
  annihilaEon	
  idenEcal	
  
	
  
CriEcal	
  point	
  –	
  threshold	
  for	
  dislocaEons	
  avalanche	
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Low stresses:


Mobile dislocation density remains in 


Metastable solution.


Dynamic barrier decreases with increasing 
stress.

















Up to a critical stress – bifurcation to two 
solutions. �
Above it - no stable solution.
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ρc
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− dρ
dt

< 0⎛
⎝⎜

⎞
⎠⎟



( )( ) ln
( )
xs dx
xρ

ρρ
ρ

+

−= −∫Define : 



  
s(ρ) = −ρ ln ρ+ (ρ)

ρ− (ρ)
⎡

⎣
⎢

⎤

⎦
⎥ −

σ E

bµ
ln σ (ρ)⎡⎣ ⎤⎦ +

c
2

ln(c + 2ρ)− ρ 1− ρbµΩ
2kBT

⎛

⎝⎜
⎞

⎠⎟
Fro (k=2):



  P(n = Nρ) = P(ρ) ~ e−Ns(ρ )Using*: 



Leads to    


  
P ρ( )∝ ρ+ (ρ)

ρ− (ρ)
⎡

⎣
⎢

⎤

⎦
⎥

Nρ σ (ρ)⎡⎣ ⎤⎦
Nσ E bµ

(c + 2ρ)Nc 2 e
Nρ 1−ρbµΩ

2kBT
⎛

⎝⎜
⎞

⎠⎟

   

P(ρ) = S ''(ρ*)
2πN
P ρ*( )

 
e−N[s(ρ)−s(ρ*)] And the normalized PDF



*Assaf and Meerson, Phys Rev. E 21116 (2010)





Comparing PDF�

•  Analytical analysis reproduces full PDF.
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Comparison with simulation results  - BDR �

•  Analytical solution for relative probability to reach critical point.�
•  Normalized probability and rate for reaching the critical state.�
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Fitting to reproduce observed BDR �

•  Within range from fit to experimental�
 
P  1

τ
 exp σ E

1.6( )
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Other dependencies�
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Employ analytical solution to various scenarios



Dependency on mobile dislocation 
generation pre-factor





PRE-breakdown �
•  As the system approaches 

the critical point. 
Fluctuation diverge.�

•  Observable through 
standard deviation of the 
time correlation �

•  Allows critical point 
detection while avoiding 
actual breakdown.�



Summary�
•  Intermittency due to collective dislocation response is well 

established.�
o  Experimental scenarios: acoustic emission, micro-compression, image analysis.�
o  Universal behavior  - earth quakes, other non local bifurcating  systems.�
o  Analysis using phase field (non stochastic), dynamics + explicit noise, stochastic.�

•  Proposed a simple stochastic model to describe breakdown 
phenomena�
o  Using a minimal model – MANY simplifying assumption – demonstrate critical behavior, 

bifurcation and reproduce observed BDR (E) .�
o  reproduce observed Defined few experimental scenario which allow model formulation �
o  Analytically (or at least numerically) solvable�

•  Unique experimental scenarios: �
o  PDF  - pre breakdown currents?�
o  Pre breakdown fluctuation.�

•  Can serve to bridge microscopic mechanisms to experimental 
scenarios.�

•  New opportunity for stochastic analysis…�


