Using Stochastic theory for RF breakdown analysis

Yinon Ashkenazy & Michael Assaf Racah Institute of Physics, Hebrew University, Jerusalem, Israel

Plasticity of collective dislocation ensembles from stochastic to mean field

Constitutive description of dynamic deformation: physically-based mechanisms

M.A. Meyers a,*, D.J. Benson a, O. Vöhringer b, B.K. Kad a, Q. Xue a, H.-H. Fu a ^a Department of Mechanical and Aerospace Engineering, University of California, La Jolla, CA, USA ^b Department of Mechanical Engineering, Institute for Materials Science I, University of Karlsruhe (TH), Karlsruhe, Germany

- Plastic response controlled to a large extent by dislocations (slip, twinning)
- The stochatic nature of the underlying dislocations reactions is translated through average rates to a constitutive relation = deterministic relation between stress , strain, strain rate etc. $P_i = v_i / v_0 \rightarrow v_i \sim v_0 \exp(-\Delta G / kT)$
- Using Orowan equation dislocation motion to strain (^Δl between dislocation barriers, b -burgers vector) $\dot{\gamma}$ ~ $\rho_d b \frac{\Delta l}{\Delta t}$
- Assume V>>barrier crossing time thereor Δt between crossing time given by $1/\nu_1$ Δ*t* $\dot{\gamma} = \dot{\gamma}_0 \exp(-\Delta G / k_B T) \longrightarrow \Delta G = k_B T \ln(\dot{\gamma}_0 / \dot{\gamma})$
- By assuming a functional form for ΔG one gets a constitutive link between stress, T and strain rate.

Dislocation mediated – self organized criticality

Plasticity of Micrometer-Scale Single Crystals in Compression

Michael D. Uchic,¹ Paul A. Shade,² and Dennis M. Dimiduk¹

Single crystal micro-pillar compression: Dislocation mediated intermittent flow - size effects, hardening. Dislocation density inside a plane as a controlling parameter.

Direct quantitative analysis of strain bursts (~20 micron). 850 Intermittency characterized by a universal Power law burst PDF

Acoustic emissions:

Similar + space and time coupling between events

(Weiss & Marsan, Scjence 2003) Earthquakes show similar PDF and spatio-temporal correlation (Kagan, Geopgysical J. (2007)

Uchic, Shade & Dimiduk, Annual Review of Materials Research (2009). Dimiduk, Woodward, LeSar & Uchic: "Scale–Free Intermittent Flow in Crystal
Plasticity." Science (2006) 1188.

Using dislocation dynamics to reproduce PDF

- 3D dislocation dynamics reproduce strain burst scaling $P(s) = Cs^{-\tau} \exp\left[-(s/s_0)^2\right]$
- where C is a normalization constant, τ is a scaling exponent, and s_0 is the characteristic strain of the largest avalanches.
- Intermittency as a result of dislocation Interactions. Stochastic nature a result of varying initial conditions.
- Avalanche is a 2D event, with an upper cutoff due to structure and work-hardening. Strain is limited to about 10^{\degree} -6 in a cm size sample.
- Recently (Chen, choi, papanikolaou & Sethna 2010 to 2013): scaling of structures using an advanced CDD code.

Csikor, Motz, Weygand, Zaiser & Zapperi, "Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale". Science (2007)

Spatial phase field modeling

- Using deterministic spatial model:
	- o spatial phase filed leads to complex geometrical and topological transitions: forest hardening, multplication, slip bands Koslowski, Cuitino and Ortiz, J. Mech & Phys solids 2002
	- o Complex governing equations. Leads to intermittent response and reproduces experimentally observed avalanche scaling laws.
	- o Behavior reproduced by moving from a fully 3D system to a 1D "in slip plane" model. (Koslowski phil. Mag. 2003)

• Modifications

- o Modifications such as: Introduction of Explicit fluctuations as a function of dislocations density (Zaiser & Moretti, J stat Mech 2005)
- o The main aim here is analytical tractability

Review of all methods:
Current theoretical approaches to collective behavior of dislocations

G. Ananthakrishna* Physics Rep. (2007) 113

Mean field models for critical depining

Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator

Stefanos Papanikolaou¹, Dennis M. Dimiduk², Woosong Choi³, James P. Sethna³, Michael D. Uchic², Christopher F. Woodward² & Stefano Zapperi^{4,5}

• Reproduce strain rate variation by modifying the mean field picture to include a competing relaxation mechanism. This lead to oscillation in avalanche size. (nature, 2012)

PRL 109, 105702 (2012)

PHYSICAL REVIEW LETTERS

7 SEPTEMBER 2012

Distribution of Maximum Velocities in Avalanches Near the Depinning Transition

Michael LeBlanc,¹ Luiza Angheluta,^{1,2} Karin Dahmen,¹ and Nigel Goldenfeld¹
Using a mean field model for interface depining and by solving Fokker-Planck eq. reproduced the power law decay of avalanche size and maximal velocity

$$
\frac{dV}{dt} = -kV + F_c + \sqrt{V}\xi(t)
$$

Relation to creep model

- In nano-crystalline systems radiation induced creep (due to point defect generation) can be significantly reduced. (Tai, Averback, Bellon and Ashkenazy Scripta Mat. (2011))
- We showed (using mean field model and atomistic simulations) that de-pining in grain boundaries by point defects can lead to radiation induced creep and reproduced experimental dependency. Controlling these de-pining events may allow increased IIC.

(Ashkenazy & averback Nanoletters 2012)

• Response in GB to external stress shows a distribution of depining events.

What are we trying to do…

- Use stochastic theory to allow for:
	- o transferability of failure scenario analysis (across drive conditions)
	- o Identify controlling mechanisms
	- o Define critical experiments model development / verification

Such models serve as a link between the microscopic, short time scale problem which is accessible via simulation to the measured system to the real life scenario.

For now – demonstrate the basic method using a "spherical horse" model.

Not trying to do (at this stage):

Create a comprehensive consistent microscopic model Describe the "real" mechanism at work Link to "state of the art" DDD model.

Defect model for the dependence of breakdown rate on external electric fields

FIG. 4. Measured dependences of R_{BD} (in units of breakdown per pulse, bpp) versus electric field for the T18 accelerating structure [33,43] and fits of our model (solid lines) as well as power laws (dashed lines) to the data.

Formulation of a "well-mixed" 0d model

• Assumptions:

- o Breakdown currents are driven by formation of surface extrusion/intrusions.
- o Surface protrusions are formed due to multiple dislocation reaction leading to local
- o Sub-breakdown surface protrusion are not identified (Is that true?). Therefor we assume that gradual protrusion accumulation does not control breakdown:
	- surface relaxation, interaction between various slip systems, protrusiondislocation interaction…
	- Field conditions are translated to an applied stress (AC thermal gradients \sim 100 Mpa, dc?)
- Suggested controlling parameter the number of mobile dislocations inside a band.
	- o If large amount of dislocations reach the surface in unison an instant extrusion/intrusion may lead to breakdown.
	- o We avoid spatial interaction and assume gain-loss dynamics inside a specific band.

General gain-loss type Markovian processes

 $\dot{P}_n = \rho_{n-1}^+ P_{n-1} + \rho_{n+1}^- P_{n+1} - \left(\rho_n^+ + \rho_n^-\right) P_n$

The master equation

can lead to bifurcation: a metastable state and a critical one.

We look for the quasi-stationary probability distribution function And the probability to cross the critical point (reach extinction)

 ρ_n^+

 ρ_n^-

 $\dot{P} = 0 \implies P(n) \equiv P(\rho N) \sim e^{-N[S(\rho)+O(1/N)]}$ Approximate solution based on WKB theory with 1/N being the small parameter.

"Minimal" model

- Define the "in-plane" density (in units of 1/nm).
- External stress (due to temp gradient on surface), range of 0.1 Gpa.
- Mobile dislocations can increase in number due to stress gradient (the driving force) as well as thermal activation of the multiplication reaction $d\rho^+$ *k*

$$
\frac{d\rho}{dt} = v_0 \mu A \big(\sigma(\rho)\big)^k e^{-(\phi_0 - \sigma \Omega)/k_B T}
$$

• Moving dislocations can become sessile at:

o Pre-existing barriers (concentration - C)

o"collisions" with other moving dislocations

$$
\frac{d\rho^{-}}{dt} = \rho V(\sigma)c + \rho 2V(\sigma)\rho
$$

• Properties dependence:

oVelocity increase with stress, independent of the number of moving dislocations oStress increase with dislocation content

$$
\sigma = \sigma_E + \mu \rho b \qquad \qquad V = B v_0 b^2 \sigma
$$

Model characteristics

Stable point: Dislocation generation and annihilation identical

Critical point $-$ threshold for dislocations avalanche

Low stresses: Mobile dislocation density remains in Metastable solution.

Dynamic barrier decreases with increasing stress.

Up to a critical stress – bifurcation to two solutions. Above it - no stable solution.

Define :
$$
s(\rho) = -\int_{\rho} \ln \frac{\rho^+(x)}{\rho^-(x)} dx
$$

$$
\text{Fro (k=2): } s(\rho) = -\rho \ln \left[\frac{\rho^+(\rho)}{\rho^-(\rho)} \right] - \frac{\sigma_E}{b\mu} \ln \left[\sigma(\rho) \right] + \frac{c}{2} \ln (c+2\rho) - \rho \left(1 - \frac{\rho b \mu \Omega}{2k_B T} \right)
$$

Using*:
$$
P(n = N\rho) = P(\rho) \sim e^{-Ns(\rho)}
$$

leads to
$$
P(\rho) \propto \left[\frac{\rho^+(\rho)}{\rho^-(\rho)}\right]^{N\rho} \frac{\left[\sigma(\rho)\right]^{N\sigma_E/b\mu}}{\left(c+2\rho\right)^{Nc/2}} e^{N\rho\left(1-\frac{\rho b\mu\Omega}{2k_BT}\right)}
$$

 $P(\rho) =$ $S"(\rho^*)$ $2\pi N$ *P*(ρ*) $\frac{V}{V}$ And the normalized PDF $P(\rho) = \sqrt{\frac{S''(\rho^*)}{2M}} e^{-N[s(\rho)-s(\rho^*)]}$

*Assaf and Meerson, Phys Rev. E 21116 (2010)

Comparing PDF

• Analytical analysis reproduces full PDF.

Comparison with simulation results - BDR

• Analytical solution for relative probability to reach critical point.

• Normalized probability and rate for reaching the critical state.

Fitting to reproduce observed BDR

• Within range from fit to experimental $P \sim \frac{1}{\tau} \sim \exp\!\left(\sigma_{E}^{1.6}\right)$ τ

Other dependencies

Employ analytical solution to various scenarios

REVIEWS

PRE-breakdown

- As the system approaches the critical point. Fluctuation diverge.
- Observable through standard deviation of the time correlation
- Allows critical point detection while avoiding actual breakdown.

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Summary

- Intermittency due to collective dislocation response is well established.
	- o Experimental scenarios: acoustic emission, micro-compression, image analysis.
	- o Universal behavior earth quakes, other non local bifurcating systems.
	- o Analysis using phase field (non stochastic), dynamics + explicit noise, stochastic.
- Proposed a simple stochastic model to describe breakdown phenomena
	- Using a minimal model MANY simplifying assumption demonstrate critical behavior, bifurcation and reproduce observed BDR (E).
	- o reproduce observed Defined few experimental scenario which allow model formulation
	- o Analytically (or at least numerically) solvable
- Unique experimental scenarios:
	- o PDF pre breakdown currents?
	- o Pre breakdown fluctuation.
- Can serve to bridge microscopic mechanisms to experimental scenarios.
- New opportunity for stochastic analysis…