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Motivation

Want to build high-gradient
(Eacc ≥ 100MV/m)
particle accelerators
Highest gradient achieved in
normal-conducting structures
Gradient limited by arcs
Understand arc ignition!

→ Design structures
more resistant to arcing
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Experimental comparison: DC spark experiment

High-voltage DC pulses
on spark gap in ultra high vacuum
Understand basic behavior
of vacuum arc breakdowns
Measure gap voltage & current
through the breakdown
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Evolution of a early-stage vacuum arc

Stages:
1 Field emission
2 Ionization cascade
3 Expansion
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Particle in cell (PIC) + Monte Carlo Collisions (MCC)

Volume divided into grid
Field solver
Proximity for collisions

Macro-particles moves in
continuous phase-space

Main loop:
Update

potential

Move particles Particle sinks
& sources

Collisions

Output

ou
tp

ut
st

ep

Distribute charges to grid points

Collide random pairs of particles
in each cell
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ArcPic2D
2d3v electrostatic
particle-in-cell (PIC) + MCC

cylindrical symmetry
uniform grid
finite-difference field solver
Monte-Carlo collisions

Planar electrode geometry
Particles: e−, Cu+, Cu
Physics (modular part):

External circuit
Particle emission
Collisions (el./inel.)
Electrostatic interaction

C++, partly OO for modularity
Test physics models

Supports parallel execution
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by Helga Timkó
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ArcPic2D parallelism

OpenMP multithreading
Shared memory
Requiring few code changes

Multi-stream RNG
Parallel neutral-neutral
collisions
Load balancing
Test case:

1.8 M neutral particles
5x5 µm cylinder
T=300 eV, ρ = 1017/cm3

Quite good scaling
Almost linear
Slower than ideal
due to serial sections
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Emission model

Electrons

Fowler-Nordheim from
"flat" surface with β

f

Fowler-Nordheim
area with high β

Neutrals

SEY from Cu+ impact
(constant yield) 

Heat-spike sputtering from
high-energy Cu+ impact
(MD simulations, H. Timkó)

Sputtering from
Cu / Cu+ impacts
(experimental, Yamamura & Tawara)

Field evaporation
(fraction of e- emission)
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Main simulation parameters
Emission: βtip = 35.0

βflat = 2.0
Rtip ≈ 56 nm

Rinj.(e−) = 400 nm
# Cu evap.

# e− emitted = 0.075

Rinj.(Cu) = 2 µm
Field:

Ez = 0.29 GV/m
Mesh/domain:

R × Z = 12× 20 µm
∆Z = ∆R = 0.1 µm

∆t = 1.77 fs
wsp ≈ 21.3
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Area with high
F.N. β

Area with low
F.N. β

Main difference wrt. typical run:
More Cu, in larger area
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Current
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Particle count
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Charge density
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Field on cathode

Last two frames

Fowler-Nordheim

On web
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Velocity distribution

Plasma far from
equilibrium
Hard to define a
temperature
Different velocity
components and
species have different
distributions
Some spatial
separation
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Conclusion

Initial ignition
→ Increasing neutral population
→ Increasing Cu+ population

⇒ Higher field on cathode
→ activation of flat surface field emission
→ rapid expansion of arc
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Challenges

Simulation speed with high particle numbers / dynamic range
Separate simulations for different regimes
Dynamic particle weighting

Simplified surface model
Not taking surface state into account
Simplified heat spike sputtering model
High-field electron emission
Modeling of initial tip using only Ez (r = 0)
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Summary

ArcPic2D: 2d3v PIC/MCC simulation of vacuum arcs
Breakdown spreading when Ez rises such that flat surface
starts emitting
Need to revisit surface models
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System description

System Electrons, ions and neutral atoms,
inside gap with metal ends,
with high electric field,
biased by external circuit

Description Maxwells equations,
Newtonian mechanics,
Scattering & ionization crossections,
Surface physics model,
Circuit model

Wanted Currents and particle densities
as function of space and time

Simulation Plasma dynamics by PIC with Monte-Carlo collisions,
boundary conditions from surface & circuit models
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Monte-Carlo collisions

Particles inside same cell
are considered “close enough” to collide
For each collision type, create random particle pairs
Implemented collisions:

Coulomb scattering (e−,e−), (Cu+,Cu+), (Cu+, e−)
Elastic collisions (e−,Cu), (Cu, Cu)
Charge exchange/momentum transfer (Cu+,Cu)
Impact ionization e− + Cu → 2 e− + Cu+
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Results

Wanted: Set of parameters allowing arc ignition and growth
. . . while keeping within model validity boundaries

Parameters studied:
Numerical convergence

Particle weigthing
Grid size
Time step

Electron injection
Special center-cell
All cells treated equal
Fowler-Nordheim β (tip/flat)
Tip melting current or time

Cu injection
Evaporation ratios
Evaporation area
Pre-injection
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Particle w. comparison
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Particle w. comparison (zoom)
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Back to field animation
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Back to field animation
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Particle plot

Particle densities

On web
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Density animations [cm−3]
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