

Table-top SLEDII pulse compressor I. Syratchev, CERN

Storage cavity: $Q_0^S = 1.77 \times 10^5$, $\beta^S = 5.98$ Correction cavities: $Q_0^C = 0.63 \times 10^5$, $\beta^C = 1.5$

Practical systems

- The use of CC chain allows to increase by 20-25% power gain of existing SLEDX.
- Compared to standard the SLEDII, such a system is ~6% less efficient.
- Volume (Q₀) of correction cavity is few time smaller than volume of Storage cavity.

Two stages of pulse compression

CC chain #1

Inspired by the work done by:

3dB 'cross' hybrid. 3 ports; 4 modes

Rotating modes launcher. Practical design.

Ultra compact 3dB hybrid. Design by A. Grudiev

CC#2. Rotating HE11 mode

CC chain #2

- Machined in two halves
- Individual cavity frequency tuning with pistons
- Global adjustment of the coupling using external movable short circuit

Cylindrical H_{016} cavity ($Q_0 = 6.2 \times 10^4$)

Most robust (compact) RF & mechanical solution with *F* and β tuning options. Cavity: \emptyset 54mm, length ~90.6mm

