FACET-II

Vitaly Yakimenko, February 19, 2013

FACET II

SLAC

In early 2016, LCLS-II, will begin commissioning using part of the tunnel occupied by FACET

Brookhaven National Laboratory: V.

Litvinenko, E. O'Brien

CERN: A. Grudiev, A. Latina, G. de Michele, D. Schulte, F. Zimmermann

DESY: B. Hidding

Duke University: M. Ahmed, H. Gao,

S.S. Jawalkar, H. Weller, X. Yan, Q.J Ye Jefferson Lab: A. Sandorfi

Lawrence Berkeley Lab: M. Zolotorev

Lawrence Livermore National Lab: A.

P. Tonchev

Los Alamos National Lab: B.

Carlsten, M. D. Di Rosa, J. Langenbrunner

Max Planck Institute: P. Muggli

MIT: A. M. Bernstein

SLAC National Accelerator Laboratory: E.R. Colby, J.P. Delahaye, H. Durr, J.C. Frisch, B. Hettel, M. Hogan, Z. Huang, A. Lindenberg, R. Noble, H. Ogasawara, C. Pellegrini, N. Phinney, J. Seeman, W.E. White, V. Yakimenko, D. A. Yeremian Temple University: B. Sawatzky UCLA: W. An, G. Andonian, C. Clayton, C. Joshi, K. Marsh, W. Mori, J. Rosenzweig University of Saskatchewan: R. Pywell **University of Virginia:** B. Norum Yale University: N. Cooper, M. Gai,

V. Werner

51 researcher from 16 institutions supported by at least 9 different funding agencies

Three main themes at FACET II

- High gradient acceleration techniques that will reduce the cost of both a future high-energy collider and linacbased light sources
- **High brightness beam techniques** that improve the generation, preservation, and application of such beams
- Novel radiation techniques (spanning terahertz to gamma-rays) that can be generated by FACET's high brightness beams

High gradient acceleration

					-SLAC
	multi GeV linac >5GeV	High Charge ~3 nC	High brightness	Sub-100 fs timing challenge	Positron beams
ILC relevant stage demonstration	Х	Х	Х	Х	
High transformer ratio challenge		Х	Х	Х	
PWFA with positively charged particles	Х	Х	Х	Х	Х
Ion motion in PWFA	Х	Х	Х		
Generation of super high brightness beams	Х	Х	Х	Х	
Dielectric wake field acceleration		Х	Х	Х	

ITF / FEL / General accelerator R&D

					-SLAC
	multi GeV linac >5GeV	High Charge ~3 nC	High brightness	Sub-100 fs timing challenge	Positron beams
Long linac tuning/emittance preservation	Х	Х	Х	Х	X*
Energy chirp compensation with short wakefield structures	Х		Х		
High energy bunch compression and CSR mitigation	Х		Х		
Attosecond electron bunch generation (attosecond FEL, single cycle optical/UV pulse)	Х		Х		
Plasma based coherent radiation generation (transverse gradient undulator, ion channel laser)			Х		
High-brightness beam diagnostics: transverse profiles, ultrashort bunch measurements	Х		Х		
THz generation (with tapered undulator, corrugated pipe, grating compressors	Х		Х		
Beam manipulations techniques (Echo, emittance exchange)			Х	Х	

Gamma source

	multi GeV linac >5GeV	High Charge ~3 nC	High brightness	Sub-100 fs timing challenge	Positron beams
High intensity positron source for ILC,	Х	Х	Х	Х	
Studies for high brightness polarized muon source	Х	Х	Х	Х	
Low energy QCD		Х	Х	Х	
Medium energy QCD	Х	Х	Х	Х	
High energy QCD	Х	Х	Х	Х	
Studies towards γγ collider	Х	Х	Х	Х	Х

All three themes have uniform demand for the combination of high-energy and high-brightness beams

SLAC

BIG: Beams of Intense Gamma-rays at FACET-II

- Generating gamma beams at facet with Compton back scattering of 10µm, 800µm and 400µm laser beams
 - Energy range: 2 MeV 4 GeV
 - Flux 10⁹-10¹¹ /sec;
 - Nearly 100% polarization
- Modes of operations:
 - High peak flux single burst per pulse
 - High duty factor trains of ~ 1,000 bunches per pulse
 - White (un-collimated) and mono-energetic (collimated) gamma-rays
 - Linear, circular, elliptical polarization

High-energy beam combined with state of the art laser systems deliver unprecedented combination of gamma-ray energy and flux

Comparing BIG with other Compton Sources

Name	ROKK	GRAAL	LEPS	HIγS	BIG
Location	Novosibirsk, Russia	Grenoble, France	Harima, Japan	Durham, US	Menlo Park, US
Accelerator	VEPP-4M	ESRF	SPRING-8	Duke SR	SLAC
e-beam, GeV	1.4 - 6	6	8	0.24 – 1.2	1-10
γ-beam, GeV	0.1-1.6	0.55-1.5	1.5-2.4	0.001-0.095	0.001-2 (5)
best γ–energy resolution, %	1-3	1.1	1.25	0.8-10	0.1
Maximum total flux, γ/sec	106	3x10 ⁶	5x10 ⁶	3 x10 ⁹ , E<20 MeV 2 x10 ⁸ , E>20 MeV	10 ¹¹ (10 ¹⁰)

BIG is a superior source:

- Few thousand-fold γ -ray energy span from MeV to GeV
- About 10-fold better energy resolution
- Orders of magnitude larger flux
 - two (at energies < 20 MeV)
 - four (at energies > 20 MeV)

Unprecedented intensities and unique time structure open new opportunities in fundamental and applied research

Positron source studies

- SLC source
 - (working since 1980's)
- ILC needs
 - (close to solution?)
- LHeC => reduced performance
 - (ideas?)
- Facet-II will provide:
 - $\sim 4.10^{11} \text{ y/sec}$, tunable 30-150MeV, low divergence
- Facet-II will study:
 - New target ideas: crystal channeling, liquid metal jet...

Want GeV photons to maximize production cross-section and narrow energy spread to limit energy spread of produced positrons

~ 3 10¹²e+/sec

- ~ 4 10¹⁴e⁺/sec
- < 4 10¹⁶e⁺/sec

	N [µ⁺µ⁻ / sec]	$\epsilon_{x,y}$ / ϵ_z
Neutrino factory	10 ¹³ -10 ¹⁴	0.5mm/?? mm
Muon collider	2 x 10 ¹²	25 µm/72 mm
Facet-II	10 ⁶	150 μm/50 μm

Facet-II will study photo production of muons:

- New target ideas: crystal channeling, nano-tubes targets, liquid metal jet...
- Study process with 10's Watt photon beams; scale up by many orders of magnitude
- Small phase space reduces the need for difficult and complicated cooling schemes

Photo-production is the only known way to produce polarized muons

Nuclear and higher energy physics: three main areas

Intermediate energies to At low energies to study the High energies to study study spontaneous resonant structure and states the resonant structure and breaking of QCD's chiral in rare nuclei. NRF & pigmy spin structure in nucleons. symmetry, GDH rule resonances. Astrophysics Meson photo-production. relevant processes (such as 12C(α, γ)) $\operatorname{Re}(E_{0+}^{\pi^0P})(10^{-3}/m_{\pi+})$ centre-of-mass energy (GeV) 600 <u>-</u> Sm 15 20 20 B(E1) (10⁻³ e² fm²) 10 total cross section (µb) 0 ¹⁴²Nd 30 20 400 10 0 30 20 140 Ce Mainz $m(E_{0+}^{\pi^0 p})(10^{-3}/m_{\pi+})$ HIvS projection 200 10 0 ³⁰¹³⁸Ba 20 0.5 0 1.0 1.5 10 photon energy (GeV) 0 4000 5000 6000 7000 9000

Broad energy range of polarized gammas opens up many areas of Nuclear Physics investigations

E_v (MeV)

2.0

SLAC

Gamma Gamma collider

 $E_e = 4GeV$

 $E_{vcm} \sim 1.5 \text{ MeV}$

 $L \sim 5 \times 10^{24} \text{ cm}^{-2} \text{ sec}^{-1}$

 $\sigma_{\gamma\gamma->e+e} \sim 10^{-25} cm^2 @ 1.5 MeV$

 $\sigma_{\gamma\gamma \rightarrow e+e-}$

Will focus on technology research for gamma gamma collider.

Will test for the first time ability to generate e⁺e⁻ pairs with real (not virtual) photons

SLAC

SLAC

C. Joshi: "PWFA program needs FACET II, it can not be done anywhere else."

Breadth of the potential research program makes FACET II truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications.

No other test facility has such broad interest across so many branches of the Office of Science.

Facet-II beams

									-SLAC
Injectors	Beam Energy [GeV]		gy 8 /] [ε _{NX} x ε _{NY} [μm x μm]		σ _X x σ _Y [μm x μm]			σ _z x ΔΕ/Ε [μm x %]
Thermionic	3nC e⁻	10		30 x 3		20 x 20			40 x 1
	1.5nC e⁺	10 3		30 x 3	30 x 3		20 x 20		40 x 1
Photoinjector	20pC e⁻	10	10 0.1 x 0.1		.1	1 x 1			2 x 1
	1nC e⁻	10		1 x 1		3 x 3			5 x 1
	6nC e⁻	10		5 x 5		10 x 10			20 x 1
	3nC e⁺	10	10 30 x 3		3	20 x 20			40 x 1
Witness photoinjector	0.1nC e ⁻	0.1	0.1 1 x 1			50 x 50			20 x 0.1
Lasers	Energy / Power [Joule / TW]		Rep [H	p rate Hz] [f		т [fs]		λ [μm]
TI: Sapphire	1 / 30		12	120 ;		30	30		0.8
CO ₂ laser	0.1 / 0.1		12	20) 1000		00	10.2	
Gamma beams (Inverse Compton)	Energy [GeV]	Intensity		y Rep rate [Hz]		e σ _x x c [μm x μ		σ _Y µm]	σ _z [µm]
TI: Sapphire	1.8 GeV	1	010	120		5 x 5		5	10
CO ₂ laser	150 MeV	MeV 10 ¹⁰			120		5 x 5	5	10

FACET II cost \$M (40% overhead rate)			
			-SLAC
FACET Decommissioning			4.9
Minimal Facility		35	
- Wall, PPS, S4 Chicane, dog. leg/FF, spectrometer	er,		
dump, exp. area, ionization laser, access			
Positron operations		22	
 Kickers/transport to target 	7		
- Experimental area chicanes	15		
Witness e- injector (reuse XTA)		5	
ITF (PPA/ <mark>FEL</mark>)		38 / <mark>31</mark>	
- Injector-L0	25 / <mark>5</mark>		
- BC1-L1	13/ <mark>5</mark>		
- BC2-L2-L3 (exp. Area)	0 / 21		
Lasers (BIG)		9-36	
- S10 Laser infrastructure	2		
 10-120 Hz Ti Sapphire 	3-30		
- 120Hz CO2	4		

Totals (PPA/FEL)

109-136 / <mark>31</mark>