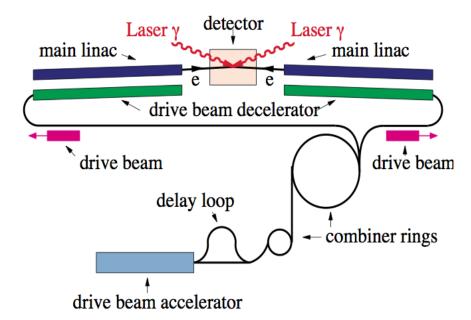
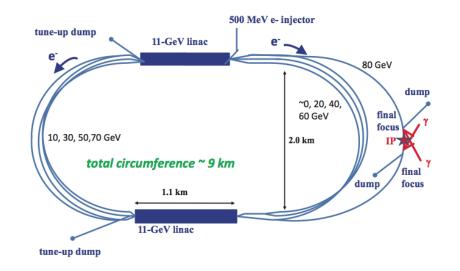

#### SAPPHiRE Physics Case: Experiment e-e-, eγ and γγ colliders

Mayda M. Velasco SAPPHiRE Day Feb. 19, 2013

### **Technical facts and assumptions**

- Starts from e<sup>-</sup>e<sup>-</sup>
  - Both beam can be polarized
  - We have never built a high energy e-e- collider
- Will need high power laser or FEL to generate high energy  $\gamma$ -beam ( $e^{\Box}\gamma_{laser} \rightarrow e^{\Box}\gamma$ ).
  - Main questions from our community, can this be done?
     Main topic of today's meeting
  - Polarization of photon controlled from the polarization of the  $\gamma_{\text{laser}}$
- Performance of the detector and beam environment not more difficult that what we are experiencing at the LHC


## γγ collider based on e<sup>-</sup>e<sup>-</sup>




## **Initial designs**

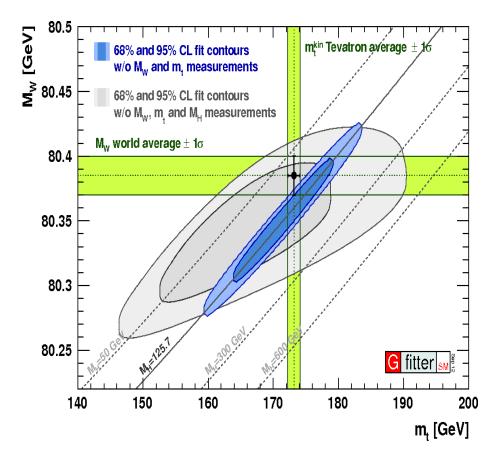
#1 Light Higgs Factory: CLICHE, ILC (TESLA) & SAPPHiRE

| Machine  | $E_{e^+e^-}$             | $M_{h_{SM}}$ | Yield/year         | Ref.                                |
|----------|--------------------------|--------------|--------------------|-------------------------------------|
|          | $({ m GeV})$             | (GeV)        |                    |                                     |
| CLICHE   | 150                      | 115          | 22.5k              | hep-ex/0110056                      |
| CLICHE   | 160                      | 120          | 23.6k              | Correct for $\Gamma_{\gamma\gamma}$ |
| TESLA    | 160                      | 120          | 21.0k              | hep-ex/0101056                      |
| SAPPHiRE | 160                      | 125          | 20.0k              | 1208.2827                           |
| $e^+e^-$ | $350_{TESLA}(500_{NLC})$ | 120          | 3.5k(20k) Tag(Raw) | hep-ph/0101165                      |





## Why built a low energy γγ collider as a light Higgs Factor?

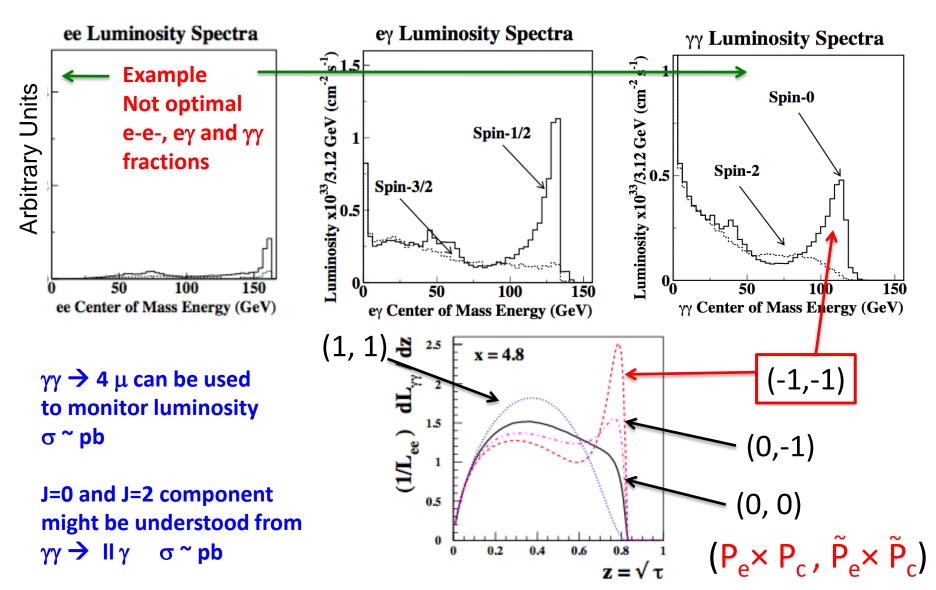

In my opinion: To search for the unexpected properties of the Higgs in a model independent way... that is,

**Higgs CP Mixing and Violations** 

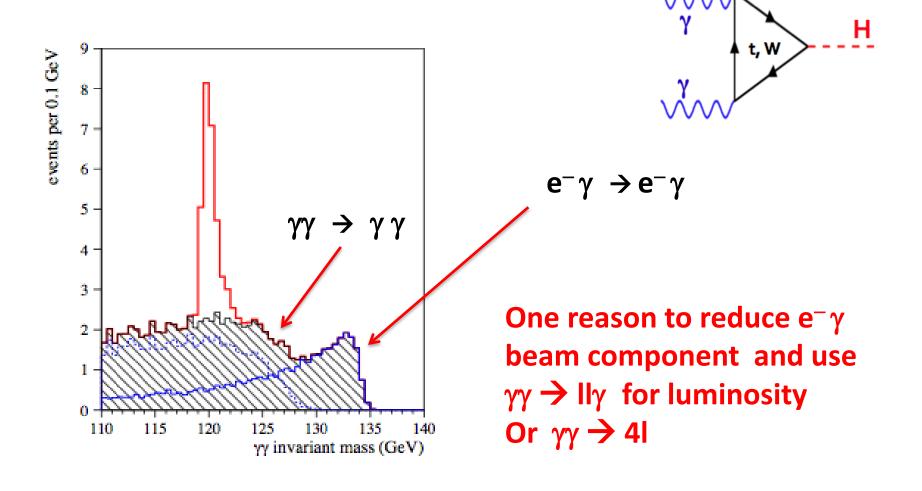
CP asymmetries at the 1% level accessible with ½ a year with current designs

# Why complement the physics program with e-e- and e-γ collisions?

- Test consistency in EW sector requires precise measurements of parameters like:
  - $-\sin^{2} \theta_{W}$  e^{-}e^{-} \rightarrow e^{-}e^{-}  $-M_{W} = M_{Z} \cos \theta_{W}$  e^{-}\gamma \rightarrow W\_{V}  $-M_{H}, \Gamma_{\gamma\gamma} : \gamma\gamma \rightarrow H$



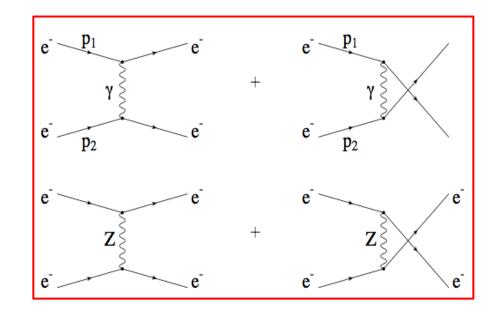

### SAPPHiRE Beam Configuration needed for full experimental program


Assumptions and run recommendation:

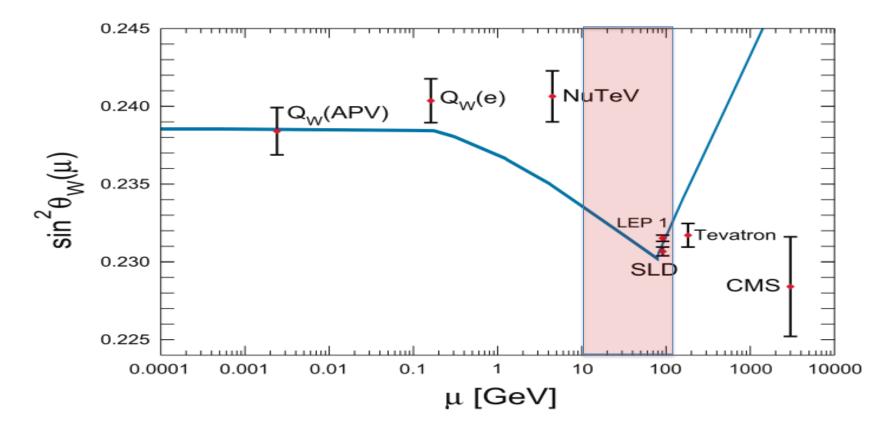
- Start running each mode separately (ee, eγ, γγ):
  - e<sup>–</sup>e<sup>–</sup> first:
    - Physics
    - Understand L<sub>ee</sub> luminosity
    - e<sup>-</sup> beam polarization
  - $e^- \gamma$  second:
    - Physics
    - commission  $e^{\Box}\gamma_{laser} \rightarrow e^{\Box}\gamma$
  - Finally  $\gamma\gamma$
- Optimize SAPPHiRE  $\gamma\gamma$  paramaters
  - Highest yields for Higgs for both linear and circular polarization
  - Reduce backgrounds in H  $\rightarrow$  bb and H  $\rightarrow \gamma \gamma$
  - Minimizing amount of ee and  $e\gamma$ , while keeping enough event to monitor polarization and luminosity.

# Beam optimization depends on conversion efficiency of $e^{\Box}\gamma_{laser} \rightarrow e^{\Box}\gamma$




#### Beam composition affects our Signal/Background



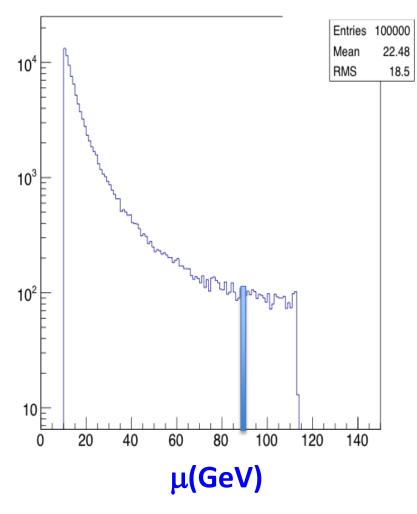

#### 1<sup>st</sup> : e-e- collider mode @ SAPPHiRE

- e e geometric luminosity: Lee = 2 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- 10<sup>7</sup>s per year: 200 fb<sup>-1</sup> or 200,000 pb<sup>-1</sup>
- Moller scattering  $e^-e^- \rightarrow e^-e^-$ 
  - Ecm = 160 GeV; Scatt. angle > 5 degree; PT > 10 GeV for outgoing e-

P1e × P2e= 0  $\rightarrow \sigma$  = 2981 pb P1e × P2e=-1  $\rightarrow \sigma$  = 3237 pb P1e × P2e=+1  $\rightarrow \sigma$  = 2728 pb  $\rightarrow N_{ev} \sim 6 \times 10^8$ 



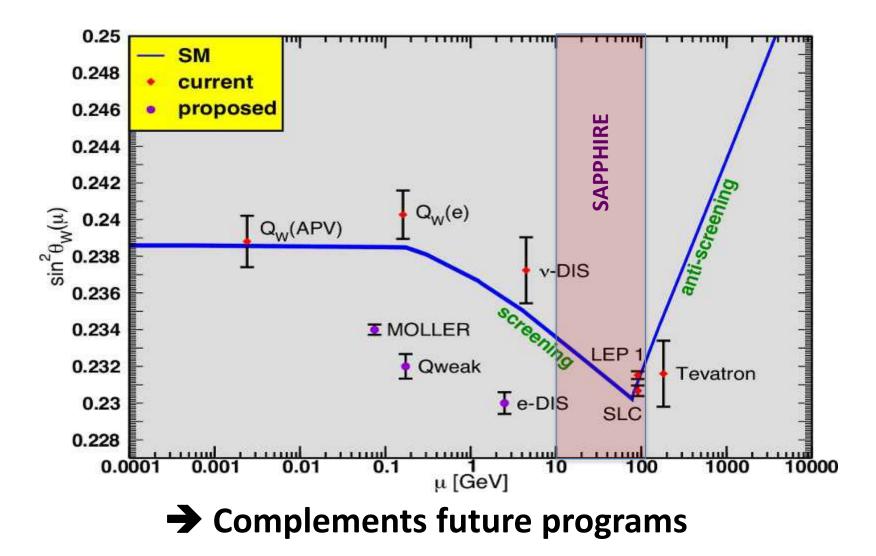
## Interested in running of $sin^2 \theta_w$ and measurement at the Z-pole



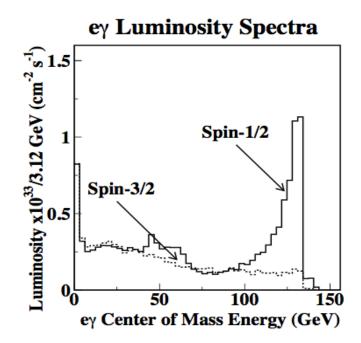

At SAPPHIRE  $\mu = E_{cm} \operatorname{sqrt} \{ \frac{1}{2} (1 - \cos \theta) \}$  $\theta = \operatorname{scattering angle} \rightarrow \operatorname{Maximum} \mu^{-113} \operatorname{GeV}$ 

#### e<sup>-</sup>e<sup>-</sup>: Moller Scattering to get running of $\sin^2 \theta_{w}$ **@ SAPPHiRE** @ SLC (e+e-) $A_{\rm LR}^{(2)} \equiv \frac{{\rm d}\sigma_{\rm LL} - {\rm d}\sigma_{\rm RR}}{{\rm d}\sigma_{\rm LL} + {\rm d}\sigma_{\rm RR}}$ $A_{\rm LR} \equiv \frac{\sigma(e^+e_L^- \to \rm hadrons) - \sigma(e^+e_R^- \to \rm hadrons)}{\sigma(e^+e_R^- \to \rm hadrons) + \sigma(e^+e_R^- \to \rm hadrons)}$ $\frac{N_{\rm LL} - N_{\rm RR}}{N_{\rm LL} + N_{\rm RR}} = P_{\rm eff} A_{\rm LR}^{(2)}(y) \left(\frac{1}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}{1 + \frac{1 - P_1 P_2}{1 + P_1 P_2} \frac{\sigma_{\rm LR} + \sigma_{\rm RL}}}}}}}}$ $\frac{N_L - N_R}{N_L + N_P} = P_{e^-} A_{\rm LR},$ $P_{\rm eff} = \frac{P_1 + P_2}{1 + P_2 P_2}.$ $A_{ m LR}^{(2)}(y=1/2) ~pprox (1-4\sin^2 heta_W)rac{2\,x}{3+2\,x}, \qquad x\equivrac{s}{m_Z^2}.$ $A_{\rm LR} = \frac{2(1 - 4\sin^2\theta_W)}{1 + (1 - 4\sin^2\theta_W)^2}$ ~5% $y = \frac{1 - \cos \theta}{2}, \qquad 0 \le \theta \le \pi$ ~15%

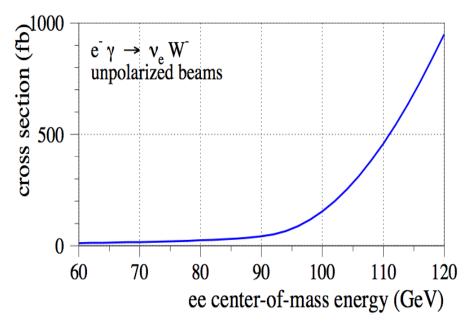
## Precision on $\sin^2 \theta_w$ at SAPPHIRE


Letizia Lusito




Like SLAC-SLC (& LEP) at M<sub>z</sub>

- A<sub>LR</sub> based on 150K event
- $\delta A_{LR} \simeq 0.003$
- $-\delta \sin^2 \theta_w \simeq 0.0003$
- SAPPHiRE at highest  $\mu$ 
  - $A_{LR}$  based on 10<sup>6</sup> event
  - $-\delta A_{LR} \simeq 0.001$
  - $-\delta \sin^2 \theta_{W} \approx 0.0004$
- In addition to precise measurement of running down to 10 GeV


#### e<sup>-</sup>e<sup>-</sup>: Moller Scattering to get running of sin<sup>2</sup> θ<sub>w</sub>

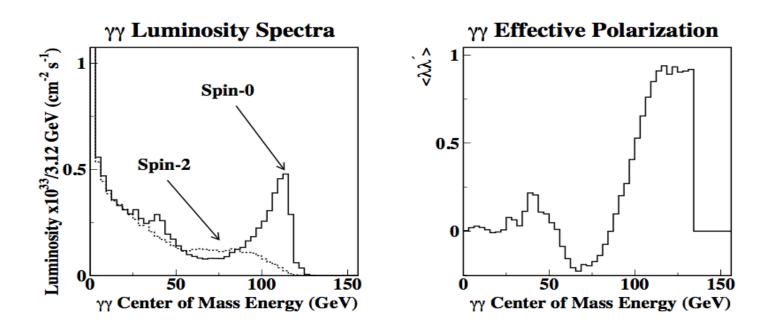


### 2<sup>nd</sup> $e^-\gamma$ : $M_W$ from $e^-\gamma \rightarrow W^-\nu$

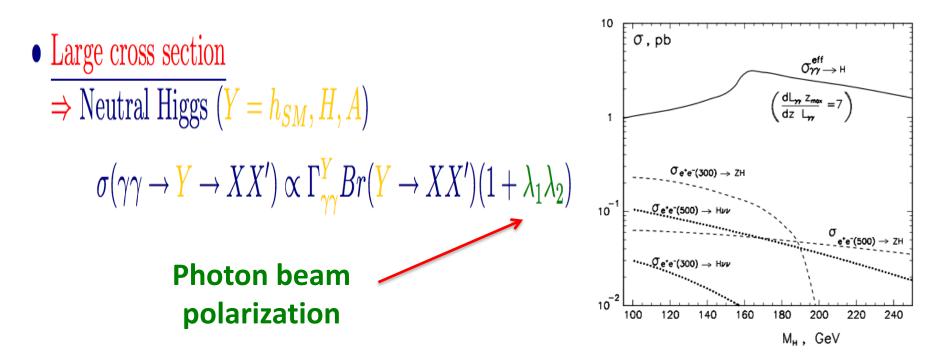


 As part of understanding produces photon spectra, would like to keep on energy of ebeam producing the γ beam fixed, while increasing the energy of 2<sup>nd</sup> e- beam only Mass measurement scanning might be better than from W → hadron events? To be checked.
Pileup dependent, beam composition dependent...



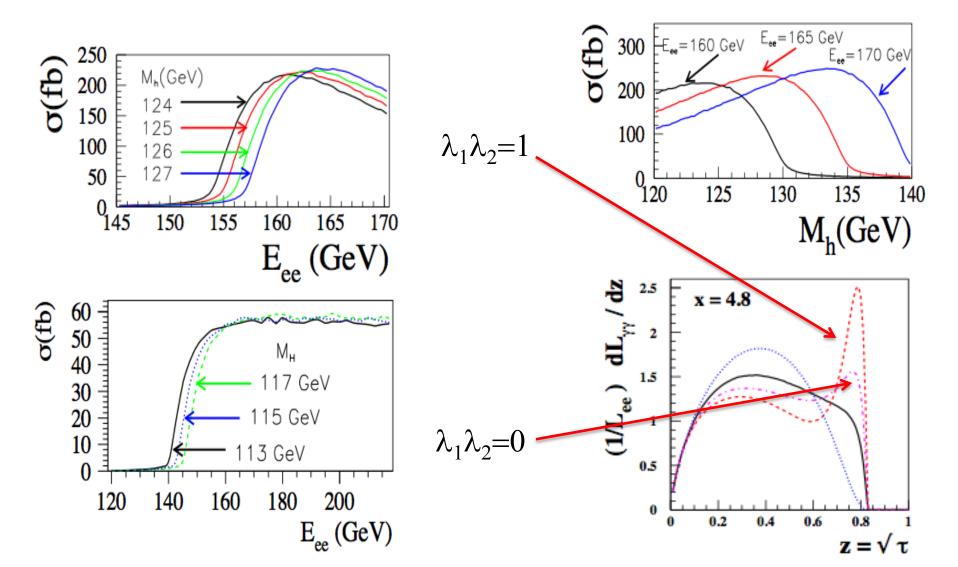

#### $e^{-\gamma} \rightarrow e^{-hadrons} \& e^{-\gamma} \rightarrow v hadrons$

• Also useful to understand early on the hadron structure of the photon

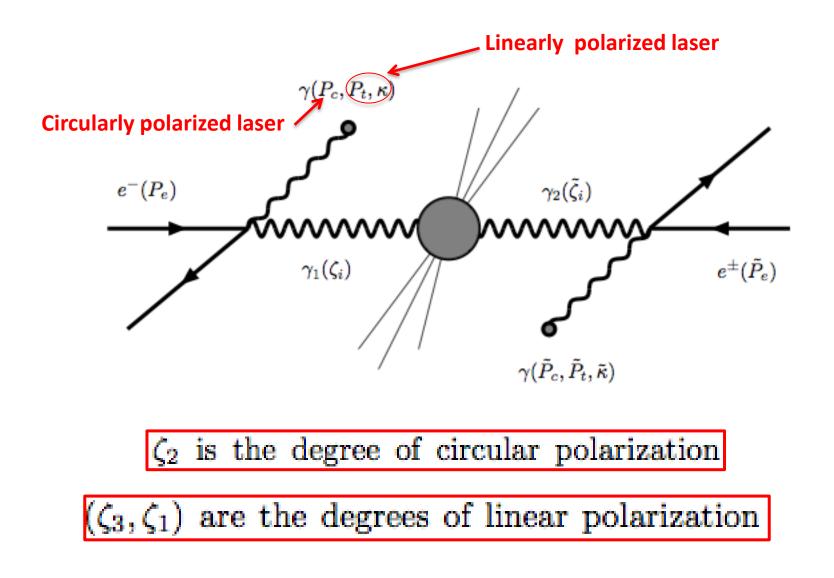

- Needed for proper estimate of the background in channels like  $\gamma\gamma \rightarrow H \rightarrow bb$ 

#### **3**<sup>rd</sup>: $e^-e^- \rightarrow \gamma\gamma$ **Spectrum tuned for a Higgs-factory**

• Well defined J = 0, 2 final states, when starting with *circularly* ( $\lambda = \pm 1$ ) polarized  $\gamma$ 's




## $\gamma\gamma$ : H production in $\gamma\gamma \rightarrow$ H




• <u>Well defined CP-states</u>, with *linearly*  $(\lambda = 0)$  polarized  $\gamma$ 's  $\Rightarrow (\gamma_{\parallel} \parallel \gamma_{\parallel}) \Rightarrow CP$ -even  $\Rightarrow (\gamma_{\parallel} \perp \gamma_{\parallel}) \Rightarrow CP$ -odd

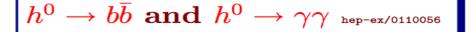
## Cross sections convoluted with the expected beam profile

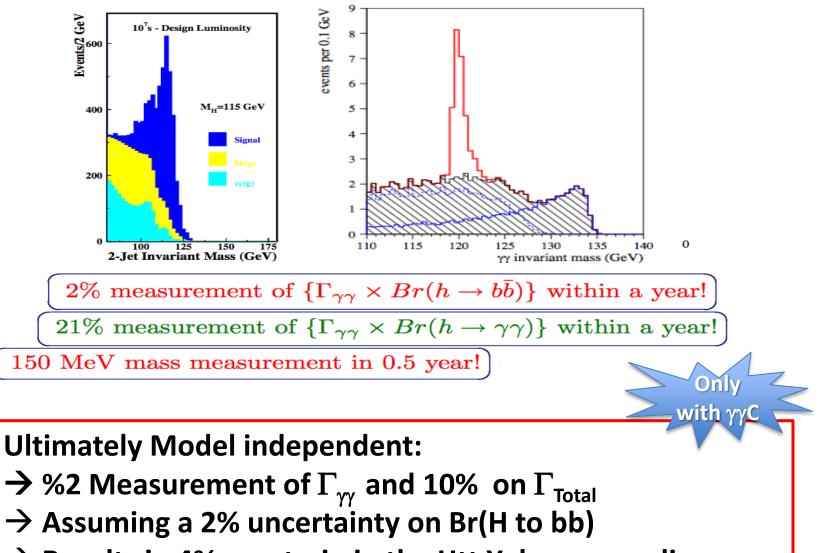


#### $\gamma\gamma$ Ideal To Measure CP Mixing and Violation



 $\zeta_2$  is the degree of circular polarization  $(\zeta_3, \zeta_1)$  are the degrees of linear polarization <u>In s-channel production of Higgs</u>:





$$\overline{\left|\mathcal{M}^{H_{i}}\right|^{2}} = \overline{\left|\mathcal{M}^{H_{i}}\right|^{2}_{0}} \left\{ \left[1 + \zeta_{2}\tilde{\zeta}_{2}\right] + \mathcal{A}_{1}\left[\zeta_{2} + \tilde{\zeta}_{2}\right] + \mathcal{A}_{2}\left[\zeta_{1}\tilde{\zeta}_{3} + \zeta_{3}\tilde{\zeta}_{1}\right] - \mathcal{A}_{3}\left[\zeta_{1}\tilde{\zeta}_{1} - \zeta_{3}\tilde{\zeta}_{3}\right] \right\}$$
  
== 0 if CP is conserved  
$$== +1 (-1) \text{ for CP is conserved for}$$
  
A CP-Even (CP-Odd) Higgs

If  $\mathcal{A}_1 \neq 0$ ,  $\mathcal{A}_2 \neq 0$  and/or  $|\mathcal{A}_3| < 1$ , the Higgs is a mixture of CP-Even and CP-Odd states

Possible to search for CP violation in  $\gamma\gamma \rightarrow H \rightarrow$  fermions without having to measure their polarization

In bb, a  $\leq 1\%$  asymmetry can be measure with 100 fb<sup>-1</sup> that is, in 1/2 years arXiv:0705.1089v2





ightarrow Results in 4% constrain in the Htt Yukawa coupling

### Short term plan

 In the next few month we need to optimize the SAPPHIRE machine parameters that could give us the best physics program

- Including staging for  $e^-e^-$  and  $e^-\gamma$  with respect to  $\gamma\gamma$ 

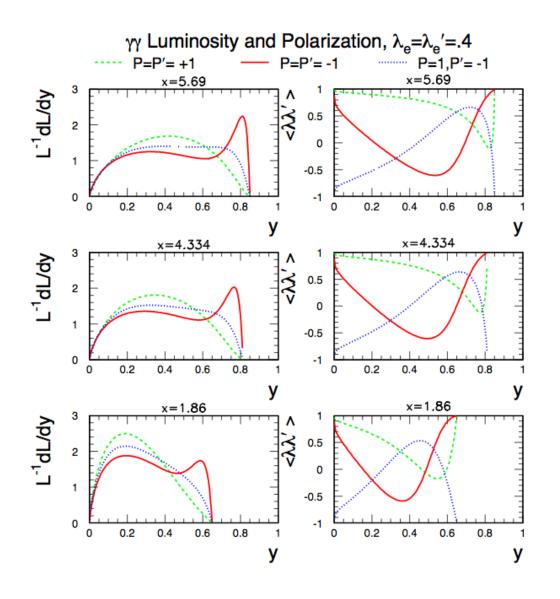
- Need to
  - make quantitative estimates of how well we could measure  $\sin^2 \theta_w$  in e<sup>-</sup>e<sup>-</sup> and M<sub>w</sub> in e<sup>-</sup>  $\gamma$
  - Redo all 125 GeV Higgs estimated with realistic conditions
  - Determine accuracy at which the various CP asymmetries could be measured

### **Forming Working Groups**

- Electro Weak
- Higgs
- QCD
- Flavor Physics
  - Interest from the tau community
- Luminosity and polarization

#### Workshop around May or June

#### BACKUP


Summary for Light Higgs

After three years of data taking at nominal conditions for CLICHE  $M_h = 120$  GeV.

| Measurement                                         | Precision     |
|-----------------------------------------------------|---------------|
| $\Gamma_{\gamma\gamma} \times Br(h \to bb)$         | 0.012         |
| $\Gamma_{\gamma\gamma} \times Br(h \to WW)$         | 0.035         |
| $\Gamma_{\gamma\gamma} 	imes Br(h 	o \gamma\gamma)$ | 0.121         |
| $\Gamma_{\gamma\gamma} 	imes Br(h 	o ZZ)$           | 0.064         |
| $\Gamma_{\gamma\gamma} 	imes Br(h 	o \gamma Z)$     | 0.20          |
| $\Gamma_{\gamma\gamma} * \times$                    | 0.021         |
| $\Gamma_{Total}$ *                                  | 0.13          |
| Mass $(\gamma \gamma \text{ decay})$                | 61 MeV        |
| CP asymmetry $(WW \text{ decay})$                   | 0.035 - 0.040 |

\* Take  $Br(h \rightarrow bb)$  from LC × 19% measurement at TESLA in 500 fb<sup>-1</sup>

#### **Compton Laser Backscattering Facts**



$$E_e + w_o \to E_{e'} + E_\gamma$$

$$x_{max} = rac{4E_ew_o}{m_e^2}$$

$$E_{\gamma} = \frac{x}{x+1} E_e$$

$$y_{max} = rac{E_{\gamma}}{E_e}$$

Available:

- $w_o = 3.53 \ eV$ 
  - $= 0.351 \mu m \ laser$