

Luminosity at yy collider

Marco Zanetti (MIT)

Outline

- Intro, γγ colliders basics
- Luminosity at γγ colliders
- Sapphire simulation
- Alternative approaches
- Luminosity measurement
- Conclusions

$\gamma\gamma$ colliders in a nutshell

- e⁻e⁻ colliders equipped with high power laser beams
- Compton backscattering of the lasers photon off the electron beams
- Energy-angle correlation of the scatter photons => collimated γγ collisions at ~0.8√s_{ee}

γγ collider basics

- Compton scattering energy:
- Max energy for back scattering γ energy:
- Avoid e+e- pair production => limit vs of backscattered photon and laser => limit on x=> limit on laser photon ω:

 Compton cross section depend on relative γ and e⁻ polarization (λ and P):

 For the Higgs production need polarized beams

$\gamma\gamma$ collider basics

- The luminosity of the hard $\gamma\gamma$ scattering depends on how efficiently the electron beam energy is transferred to the laser photons
- Require to have high "thickness" for the laser target, to have a large fraction of the e- undergoing Compton backscattering
 - Parameter k: fraction of e- scattering with at least 1 photon
- Correlation between γ energy and its angle of emission (θ^{-1}/γ):

- Allowing for tuning of the luminosity spectrum
 - Parameter ρ =d/ $\gamma\sigma_{y}$: normalized distance between the Compton scattering point and the IP

γγ collider basics

- Non linearities:
 - High thickness of the laser can lead to several simultaneous Compton scatter off an e-
 - Effect driven by parameter ξ and affecting the effective Vs:

- "Spurious" luminosities:
 - Low energy tails are unavoidable
 - Not possible to deploy bending magnets between CP and IP, spent beams taken out by crab-waist schema with large (25mrad) x-angle
 - e^-e^- and $e^-\gamma$ collisions unavoidable

Luminosity Optimization

- $\gamma\gamma$ luminosity proportional to the geometrical e⁻e⁻ luminosity
- Beamstrahlung doesn't affect luminosity performances (in first approximation)
- Can squeeze beem dimensions in transverse and longitudinal directions
- Goal is to maximize the E>0.6E₀ part of the spectrum
 - Maximize Higgs production rate
 - Low energy component assumed to be under control in the analysis
- High k, small ρ. Tradeoff between sharpness of the top energy peak and overall luminosity

SAPPHiRE

SAPPHiRE: a Small Gamma-Gamma Higgs Factory, S.A. Bogacz, J. Ellis, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, F. Zimmermann, arXiv:1208.2827

SAPPHiRE parameters

Total electric power	100 MW
Beam energy	80 GeV
Beam polarization	0.80
Bunch population	10 ¹⁰
Number of bunches per train	
Number of trains per rf pulse	
Repetition rate	cw
Average bunch frequency	200 kHz
Average beam current	0.32 mA
RMS bunch length	$30 \ \mu m$
Crossing angle	$\geq 20 \text{ mrad}$
Normalised horizontal emittance	$5\mu{ m m}$
Normalised vertical emittance	$0.5\mu{ m m}$
Nominal horizontal beta function at the IP	$5\mathrm{mm}$
Nominal vertical beta function at the IP	$0.1\mathrm{mm}$
Nominal RMS horizontal IP spot size	$400\mathrm{nm}$
Nominal RMS vertical IP spot size	$18\mathrm{nm}$
Nominal RMS horizontal CP spot size	$400\mathrm{nm}$
Nominal RMS vertical CP spot size	$180\mathrm{nm}$
e ⁻ e ⁻ geometric luminosity	$2.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Guinea-Pig simulation

- Guinea-Pig (from Daniel Schulte):
 - Simulation for the beams interaction based on "macroparticles" including beamstrahlung, pinch effect, backgrounds, etc.
- Assume SAPPHiRE parameters
- Use a Guinea-Pig "add-on" to simulate the Compton scattering for the two electron beams
- The spent e- beams and the hard photons are then plugged into Guinea-Pig and carried on till the IP
- Interactions among the beams (both e- and γ) are simulated

Sapphire Lumi spectrum

- Typical features and dependency of the luminosity versus ρ and relative e- γ polarization
 - 1/6 of the geometrical e+e- lumi
 - 10k Higgs per year
- Note that possible beamstrahlung contribution is taken into account by the simulation

JLAB approach (Y. Zhang)

- Give up high "thickness" of the laser beam (for efficient Compton conversions)
- High thickness implies some bad features:
 - High power laser needed
 - Reduce non-linear effects (affecting √s)
 - Multiple Compton scattering=> dominant $\gamma\gamma$ collision energy tail
- To keep the same luminosity need to increase e⁻ beam current
- Energy recovery to not blow up power consumption
 - But lumi scales with k2, energy recovery goes linearly with k (at the same lumi)
- Beamstrhalung might be a showstopper

- Issue recently raised by Yukoya
- Large amount of BS photons can be produced by the spent beams when they cross each other
- Nasty background
 - Populating the low tail of the luminosity spectrum
- Troubles in driving out the spent beams (e- and γ)
- Prevent recirculation in the JLAB approach

Luminosity measurement

- No practical way to measure absolute lumi, rely on EM candles
- Individual spin dependent components needs to be measured
- γγ ->|⁻|+
 - High rate, but addressing only J=2 initial state
- γγ ->γΙ⁻Ι+
 - Main candle for Higgs-like initial state
 - Factor ~300 smaller xsec than II
- γγ ->|⁻|+|⁻|+
 - Could address mixed J states but too low lrate

Conclusions

- Luminosity spectrum depends on the IP design and the laser features (power, polarization)
 - Does the current laser technology meet the requirements?
- 10-15% width of the $E>0.6E_0$ peak
- Sapphire can yield 10k SM-like Higgs events per year
 1/6 of geometrical luminosity
- Relative population of the high and low parts of the spectrum can be tuned
 - How much does physics analysis require the low part to be depleted?
 - How much is "spurious" luminosity relevant?
- Alternative approach proposed, is it worth/achievable?

BACKUP

Features

- Combine photon science and particle physics
- Unique way of addressing Higgs physics
 - High signal production cross section, small background
 - Similar number of Higgs events per year as ILC
 - $H\gamma\gamma$ vertex interesting probe for new physics
 - Polarized collisions => control of the initial state CP => probe for BSM
 - Precise mass measurement
- Technical advantages
 - No need to mass produce positrons
 - s-channel production of the Higgs, smaller \sqrt{s}
 - Compact design, small budget
 - Interplay with other machines (LHeC)

- Spin and CP will be addressed by the LHC
- A scenario where the Higgs is a mixture of CP state is more difficult to assess

- Individual CP states can be probed by tuning the photons polarization
- In bb final state a <1% asymmetry (CP violation) can be measured with ~100/fb arXiv:0705.1089v2

γγ collider Luminosity

- γγ Luminosity depends on:
 - The number of beam electrons scattering at least once on laser beam
 - "thickness" k of the laser beam (related to the laser power and pulse duration)
 - Normalized distance ρ of the Compton Scattering point to the interaction point

- Quasi monochromaticity of γγ interaction energy:
 - Thanks to energy-angle correlation, $\theta^{1/\gamma}$