



### LHC CRAB Cavity Measurements Meeting

### Integration of the 4-Rod LHC CRAB cavity

### for RF measurements at 4.5K in SM18

Meyrin, January 9th 2013

EN/MME Working Team for the LHC/CRAB Collaboration L. Alberty, S. Atieh, O. Capatina, V. Maire, T. Renaglia





### Contents

- Short introduction to the LHC CRAB integration environments
- Cryostat for 4.5K RF Measurements in SM18
  - Design & Materials
  - □ Calculations
  - □ Comments
- Limitations and modifications being studied
  - □ Guiding system
  - □ Vacuum supply



- Until now, two <u>test environments</u> are foreseen:
  - SMI8 test cryostat;

All mechanical calculations done until now assess only this test environment

SPS;

#### Table I – Pressure conditions for each test environment

| Test environment  | Safety valve<br>set-point | Maximum allowable<br>pressure (PS) | Test pressure (1.43xPS) |
|-------------------|---------------------------|------------------------------------|-------------------------|
| SM18Test cryostat | 1.5bar±0.15 *(abs)        | I.5bar (abs)                       | 2.1bar (abs)            |
| SPS               | 1.8bar±0.15* (abs)        | I.8bar (abs)                       | 2.6 bar (abs)           |

\*This tolerance for the set pressure of safety valves is defined by EN ISO 4126-1



## Cryostat for 4.5K RF Measurements in SM18 -Design & Materials-



Cryostat for 4.5K RF Measurements in SM18 -Design-





Cryostat for 4.5K RF Measurements in SM18 -Materials-

- Materials:
  - Cavity body: unalloyed Niobium
  - Connections: AISI 300-Series Stainless Steel (flanges in AISI 316LN)

Typical physical and mechanical properties:

| Physical and mechanical properties of unalloyed Niobium at room temperature*<br>-Reactor grade Type 1, UNS R04200- |                          |                 |                                           |                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-------------------------------------------|-----------------------------------------------------|--|--|
| Density (kg/m³)                                                                                                    | Young's modulus<br>(GPa) | Poisson's ratio | Yield strength RP <sub>0.2</sub><br>(MPa) | Max allowable stress<br>RP <sub>0.2</sub> /SF (MPa) |  |  |
| 8600                                                                                                               | 100                      | 0.4             | 75                                        | 70                                                  |  |  |
| Stainless steel AISI 316LN (1.4429 – round bar)**                                                                  |                          |                 |                                           |                                                     |  |  |
| 8000                                                                                                               | 200                      | 0.3             | RP <sub>1.0</sub> =315MPa                 | RP <sub>1.0</sub> /SF=300MPa                        |  |  |

\*Data from GRANTA'S CES Selector 2012 Database

\*\*Data from EN 10088-1 Annex A, EN 13155-3 Annex O, EN 10021:2006, EN 10088-3:2005



### Cryostat for 4.5K RF Measurements in SMI8 -Calculations-



### Cryostat for 4.5K RF Measurements in SM18 -Calculations-

#### • Assumptions:

 Stainless Steel (SS) flanges perfectly bonded to cavity body

#### Boundary conditions:

- External pressure: 0.2MPa
- Self-weight
- Hold by top flange
- Compensation of non-symmetry with external force of 327N (D)
- Material model:
  - Elastic, Isotropic (see slide 6)





### Cryostat for 4.5K RF Measurements in SM18 -Calculations-

- Results:
  - Stress intensity plot

| A: Static Structural<br>Stress Intensity<br>Type: Stress Intensity<br>Unit: MPa<br>Time: 1<br>08/01/2013 18:02 | 6 3570        | Noncommercial use only |
|----------------------------------------------------------------------------------------------------------------|---------------|------------------------|
| 149.36 Max<br>50<br>43.751<br>37.501<br>31.252<br>25.002<br>18.753<br>12.504<br>6.2541<br>0.0047182 Min        |               |                        |
| Comments:                                                                                                      |               |                        |
| The effect of <u>external</u>                                                                                  |               | Z                      |
| <u>pressure is preponderant</u>                                                                                |               | •                      |
| 0.00                                                                                                           | 250.00 500.0  | 0 (mm)                 |
|                                                                                                                | 125.00 375.00 |                        |



## Cryostat for 4.5K RF Measurements in SM18 -Calculations-

### Additional effort: bellow on vacuum line



Additional effort: bellow on vacuum line

### Cryostat for 4.5K RF Measurements in SM18 -Calculations-



Integration of prototype cavity for test in SM18

Bellow (not shown)

#### Analytical calculations:

CIYUSTAT P/ TUSTUR CAVITÉ CRAB/LHC

 $\Delta P = 2 \text{ br} \qquad \text{Soufflit: } \mathcal{D}N 40 \qquad \overline{T} = \overline{1 + 40^2} \times 0.2 = 250 \text{ M}$   $Dotone \quad \text{outre bodes } \approx 800 \text{ Num} \longrightarrow t = 200 \text{ N.m.}$   $\text{Section tobe : } \quad | \quad P_{ext} = 90 \text{ mm} \longrightarrow c = \frac{1}{7} \text{ mt}/2 = 45 \text{ mm}$   $\overline{T} = \frac{1}{5} \overline{T} \left( n_{ext}^2 - n_{int}^2 \right) = 776, 7 \times 10^3 \text{ num}^4$   $\overline{T}_{\text{MUT}} = \frac{1}{5} \frac{1}{7} \left( n_{ext}^2 - n_{int}^2 \right) = 776, 7 \times 10^3 \text{ num}^4$   $\overline{T}_{\text{MUT}} = \frac{1}{5} \frac{1}{7} \left( n_{ext}^2 - n_{int}^2 \right) = 776, 7 \times 10^3 \text{ num}^4$   $\overline{T}_{\text{MUT}} = \frac{1}{5} \frac{1}{7} \left( n_{ext}^2 - n_{int}^2 \right) = \frac{200 \text{ N}/6^3 \text{ M} n_{int}^2 \text{ M} \frac{1}{726, 7 \times 10^3 \text{ num}^4}}{726, 7 \times 10^3 \text{ num}^4}$   $\overline{T}_{\text{MUT}} = \frac{250}{\frac{7}{5} \left( 70^2 - 6h^3 \right)} = \frac{33 \text{ M}/2}{726, 7 \times 10^3 \text{ num}^4}$ Normal stress increase due to isolated effort: 12MPa

3/10/2012



Additional effort: bellow on vacuum line

### Cryostat for 4.5K RF Measurements in SM18 -Calculations-





Comments

D



### First design: comments

#### Comments

- The effect of the external pressure of 0.2MPa is preponderant for the structural strength;
- > The cavity is expected to withstand the foreseen integration design;
- Additionally, it is also expected to withstand the additional force coming from the bellow in series with the vacuum line;
- Moreover, this design was found out to have enough strength to tolerate the following additional loads->

Final note: natural vibration modes can be triggered at low frequency...





### Limitations and modifications being studied



#### Limitations

• The following limitations were pointed out by the first tests:



cavity for test in SM18

Over-constrained system not allowing significant adjustment

The position of the vacuum line coming from the top didn't allow to position correctly the vacuum valve: the in-line bellow was installed with significant deformation in order to compensate this positioning defect



• The following upgrades are being studied:

Vacuum supplied through long metallic flexible (minimizes efforts, increases versatility)

Next: Do acoustic detectors holding system need improvements?



Support system:

- Decoupling of structural/leak tightness boundaries;
- Fixed-sliding extremities allowing free expansion/contraction







# Thank you for your attention