# First results of asymmetry with QADC signals of <br> single $\mathrm{PbWO}_{4}$ crystal 

## Cosenza INFN Group

(L. La Rotonda, E. Meoni, A. Policicchio, G. Susinno, T. Venturelli)

## Data set

We have started to study QADC data taken by single $\mathrm{PbWO}_{4}$ crystal at different angles with electrons of 50 GeV both without Pb in front to the crystal and with different mm of Pb in front to the crystal.
The goal is computed: asymmetry versus angle for different shower depths and the fraction of Cerenkov component (as previous year)
This study is related to second papel :"Separation of crystal signals into/Cerenkov and scintillation components".

1. Stand-alone measurements of single $\mathrm{PbWO}_{4}$ cr. stals (room temperature)
(Data relevant for paper \#2)
Kuns 112-135, logbook page 16
Beam: $50 \mathrm{GeV} e^{-}, \theta=0^{\circ}$

- Angular scan of the crystal response (electrons)

Runs 402-433, logbook pages 33-34
Beam: $50 \mathrm{GeV} e^{-}, \theta=-60^{\circ}$ to $+60^{\circ}$
Analysed

- Angular scan of the crystal response (mips) Runs 497-532, logbook pages 38-39
Beam: $70 \mathrm{GeV} \pi^{-}, \theta=-75^{\circ}$ to $+75^{\circ}$
To be analysed
- Angular scans of the response to developing showers ( $50 \mathrm{GeV} e^{-}+\mathrm{Pb}$ )

10 mm Pb upstream, Runs 256-278, $\theta=-35^{\circ}$ to $+35^{\circ}$, logbook page 25
20 mm Pb upstream, Runs 284-309, $\theta=-35^{\circ}$ to $+35^{\circ}$, logbook page 26 Analysed
35 mm Pb upstream, Runs 310-336, $\theta=-45^{\circ}$ to $+45^{\circ}$, logbook page 28
4 mm Pb upstream. Runs $434-457 . \theta=-35^{\circ}$ to $+35^{\circ}$, logbook page 35
8 mm Pb upstream, Runs $458-460, \theta=-30^{\circ}$ to $+30^{\circ}$, logbook page 35
14 mm Pb upstream, Runs 461-463, $\theta=-30^{\circ}$ to $+30^{\circ}$, logbook page 35
To be analysed

## 50 GeV electron showers in the early stage



We have equalized ADC signals of the two channels at $0^{\circ}$ degrees



The ADC signal increases with the angle, because increases the track length.
For positive angles the CH 25 signal is larger than CH 24 one because CH 25 collects a larger Cerenkov component (vice versa for negative ones), except for positive angles $55^{\circ}$ and $60^{\circ}$.

But at fixed positive and negative corresponding angles, the difference between the signal of the 2 CHs is not equal, this is evident also in asymmetry slope.


## Asymmetry $=\frac{A D C_{\text {mean }}(\mathrm{CH} 25)-A D C_{\text {mean }}(\mathrm{CH} 24)}{A D C_{\text {mean }}(\mathrm{CH} 24)+A D C_{\text {mean }}(\mathrm{CH} 25)}$

$A D C_{\text {mean }}$ is the mean of the $A D C$ spectra shown before


At positive angles the slope is similar to the one observed last year

At negative angles slope quite different to be investigated!

We have computed asymmetry also event by event at a fixed angle

$$
\text { Asymmetry }=\frac{A D C_{\text {count }}(\mathrm{CH} 25)-A D C_{\text {count }}(\mathrm{CH} 24)}{A D C_{\text {count }}(\mathrm{CH} 24)+A D C_{\text {count }}(\mathrm{CH} 25)}
$$

Taken mean value of the asymmetry distribution for each angle

Errors of the plot are RMS of asymmetry distributions


## The two methods give the same results



## 50 GeV electrons shower with 4 mm of Pb upstream




This cut seems not optimal. (see Tommaso's presentation about these tails) Selected events with ADC_counts>100


Asymmetry computed as in the previuos case both from ADC spectra distributions and event by events


## 50 GeV electrons shower with $10 \mathrm{~mm}, 20 \mathrm{~mm}$, 35 mm of Pb upstream

In these runs observed a problem: pedestal values of physics runs are different from pedestal values of pedestal runs.
The differences are for all runs at level of:
24.5-25.5 ADC counts for ch24 and of 5.5 ADC counts for ch25.

First part of ADC spectrum after pedestal substraction



## ADC spectra after correct pedestal subtraction





## Asymmetry computed from ADC spectra



Asymmetry computed event by event



| $\frac{\text { Cerenkov }}{\text { Signal }}\left(30^{\circ}\right)=\frac{2 \text { Asym }}{(1+\text { Asym })}$ |
| :---: |


| $\frac{\text { Cerenkov }}{\text { Signal }}\left(30^{\circ}\right)=\mathbf{1 0 . 5 \%}$ (without Pb ) from positive angles |
| :--- |
| $\frac{\text { Cerenkov }}{\text { Signal }}\left(30^{\circ}\right)=\mathbf{1 8 \%}$ (without Pb ) from negative angles |

The difference must be investigated!

[^0]
## To do

- Understand the difference between negative and positive angles
- Look at the data with 8-14-25 mm of Pb in front to the crystal with electrons of 50 GeV
-Look data with pions of 70 GeV (Davide Pinci has already analysed them looking at oscillope data)


[^0]:    $\frac{\text { Cerenkov }}{\text { Signal }}\left(30^{\circ}\right)=13 \%$ (without Pb$)$ from previous testbeam with ele of 10 GeV

