DREAM collaboration meeting - October 30, 2007

Geant4 simulation of PbWO₄/BGO crystals and PbWO₄ matrix

L. La Rotonda, E. Meoni, A. Policicchio, G. Susinno, T. Venturelli

Outline

- simulation of electromagnetic processes: energy deposited in the BGO/PbWO₄ crystals and in the PbWO₄ matrix
- simulation of optical processes: attempt to estimate the Cerenkov light detection in the BGO crystal
- conclusions

Geometry and materials (1)

- PbWO₄ (BGO) single crystal
 - refractive index n=2.16 (2.15)
- PMTs are coupled with the crystal through silicone (n=1.43) cookies
- crystals are facing with air (n=1.0)

Geometry and materials (2)

• $PbWO_4$ matrix

Physics list

10 GeV e

- standard EM Physics list
 - default 1mm cut for all particle types
- optical processes
 - * photon production
 - scintillation
 - Cerenkov
 - photon processes at boundaries

Energy deposited in PbWO₄ crystal

• energy deposited by electrons: ALICE request

e⁻ energy(GeV) energy deposited(MeV)

6

10

30

50

70

100

Energy deposited in PbWO, matrix

energy deposited by electrons: to know the energy equivalent of the ۲ calibration signals

Energy deposited in BGO crystal

 energy deposited by 50 GeV electrons: to know the energy equivalent of the calibration signals

.

 oriented longitudinally (in conjunction with the DREAM calorimeter): the leakage is mostly sideways

oriented perpendicularly

Cerenkov light detection: BGO crystal (1)

- 50 GeV muon beam
- only Cerenkov effect has been activated
- in the most intuitive configuration the BGO crystal is facing with air: dielectricdielectric transition simply specifying the two refractive indexes
- the Cerenkov light yield seen by the two PMTs is not similar to the "expected" one (see e.g. Cecilia talk)

Cerenkov light detection: BGO crystal (2)

- the Cerenkov light detection strongly depends on the crystal/air surface properties
- after various attempts a good configuration as been found: dielectric-dielectric surface with:

OpBGOAirSurface->SetFinish(polished);

- this configuration leads to results in qualitative agreement with the "expected" ones
- but there are 5 parameters related to the surface that can be fixed!

Scintillation light detection: BGO crystal

October 30, 2007

slide 11

Conclusions

- the MC simulation of the single crystal and the matrix is of course a useful tool: we are working to have a public release (with documentation)
- the electromagnetic physics simulation in G4 is a very know matter: it has been used to compute the energy deposited in the crystals
- simulation of optical processes needs some reflections:
 - the scintillation characteristics of a give material and the properties of its contact surface with a different material should be known with high accuracy
 - if this, MonteCarlo results can be used to have a qualitative indication about the performances of a optical system