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Talk overview

ø The challenge of estimating ggF+2 jets uncertainties with an MVA
selection

ø Generalization of the Stewart-Tackmann procedure

ø Implementation in the MVA Analysis: Event-by-Event weights or Binned
uncertainties

ø Comparison with pure MCFM and differences

ø C++ tool to use this
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i. MVA Selection

ø Experimental situation: Want to achieve signal/background discrimination

Event classification

- Possible solutions : rectangular cuts, Fisher, non-linear contour

6

Rectangular cuts Linear (Fisher)
Non-linear
(BDT, NN...)

from Nicolas Chanon

ø Multivariate analyses use supervised learning to combine a given set of
input variables into one discriminating classifier.

→ Multivariate algorithms exploit correlations between variables better than rectangular cuts and achieve a

better separation
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ii. Uncertainties in a MVA Selection

ø Scale uncertainties of rectangular cuts can readily be checked using
MCFM Modulo the comparison of reco v true resolution of the cuts

ø MVA selects non-linearly regions of phase-space:

* Formidable challenge to select same
region with MCFM

* Our current method involves running
MCFM for every working point
Systematic scans cost a lot

* Differential uncertainties would be
highly desirable!

→ Propose Ansatz to generalize ST

uncertainties to differential uncertainties
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iii.a Recap of Stewart-Tackmann for ∆φH−jj (See talk of S. Gangal for more

details )

→ In ST procedure cross section divided as:

σ =

∫ π

∆φcut

dσ

dφ
dφ +

∫ ∆φcut

0

dσ

dφ
dφ

∗ Exclusive 2jet cross section can be written as

σ2(∆φ > ∆φcut) = σ≥2 − σ≥3(∆φ < ∆φcut)

σ≥2: inclusive 2 jet cross section; σ≥3: inclusive 3 jet cross section - here with cut on ∆φcut

∗ S/T: σ≥3(∆φ < ∆φcut and σ≥2 assumed uncorrelated, elaborated in arXiv:1107.2117

Stewart/Tackmann Procedure

* Before going further, how does one get the uncertainties above?

→ Variation of the Stewart/Tackmann procedure for jet bins:
→ Divide cross section as

σ =

∫ π

∆φcut

dσ

dφ
dφ +

∫ ∆φcut

0

dσ

dφ
dφ

∗ Exclusive 2jet cross section can be written as

σ2(∆φ > ∆φ
cut) = σ≥2 − σ≥3(∆φ < ∆φ

cut)

σ≥2: inclusive 2 jet cross section; σ≥3: inclusive 3 jet cross section - here with cut on ∆φcut

∗ S/T σ≥3(∆φ < ∆φcut and σ≥2 uncorrelated elaborated in arXiv:1107.2117

⇒ ∆2
2(∆φ > ∆φcut) = ∆2

≥2 + ∆2
≥3(∆φ < ∆φcut)
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→ Correlation completely determined: {σ≥2, σ2, σ≥3}



∆2
≥2 ∆2

≥2 0

∆2
≥2 ∆2

≥2 + ∆2
≥3 −∆2

≥3

0 −∆2
≥3 ∆2

≥3




→ Obtain two ’Bins’ which are anti-correlated with each other: {σ2, σ≥3}
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iii.b Generalization of ST uncertainties to differential uncertainties

ø Generalization to differential uncertainties: Optimally we want to adapt an established

uncertainty scheme and convert them into something more differential. Input could be ST or other.
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ø Can use ST method to predict uncertainties for many different cuts:

Region 1 Region 2

Region 3 Region 4

i. Using di�erent splittings one can formulate
a number of boundary conditions for the 
total covariance between regions

ii. Unknown parameters in covariance matrix
 scale as

iii. Assume a model with decreasing correlations

ρij � 1 − 1
a |σi − σj |

→. . . constraints on Covariance
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iii.c Generalization of ST uncertainties to differential uncertainties

RT  

x  

C R A B

Sketch of a separation into three bins

* Repeating this for three bins: {σT , σR , σA, σB}



∆2
T ∆2

T 0 0

∆2
T ∆2

R vCR − vBR vBR
0 vCR − vBR ∆2

A vAB
0 vBR vAB ∆2

B




ø The covariance matrix can be determined up to the correlation between
regions A & B: vAB

→ Ansatz with a model using decreasing correlations: 1− 1
a

∣∣σi − σj
∣∣

→ Procedure can be generalized to n bins with 1
2

(
n2 − n

)
model parameters.

Thanks to S. Gangal, F.J. Tackmann for help and providing inputs!
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iv. IR sensitive variables

ø Ideally one would want differential uncertainties in all variables of interest.
I.e. in all variables that go into a MVA classifier

ø Some variables are more relevant than others for the size of the overall
gg → H+2 jets uncertainties:

* MCFM Cumulant uncertainties for ∆φH−jj and the recoil pT of the Higgs + dijet system
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Plots shown by F.J. Tackmann und S. Gangal (in October Meeting)

→ Results shown in the following use a single matrix in ∆φH−jj .
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vi. Validation via cumulants

Non-trivial test: Matrix based on MCFM in ∆φH−jj and assign uncertainties to Pythia gg → H+2 jets

(with second jet from parton shower);

ø Cumulants for cuts on ∆φH−jj and recoil pT of the Higgs + dijet system:

ATLAS jet selection applied; mjj > 400 GeV/c2, ∆ηj j > 2.8
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i. Reproduce MCFM uncertainties fairly well for ∆φH−jj cuts.
Observed differences are due to using MCFM uncertainties on the Pythia shape of ∆φH−jj .

ii. Reproduce MCFM uncertainties also well in recoil pT ; but we used
∆φH−jj differential uncertainties as input!
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v.a Event-by-Event weights or Binned Uncertainties

ø Ideally: assign an uncertainty for the scale variations to each event.

Looked into two approaches: Event-by-Event weights and a binned approach:
ø Can be done by generating a set of pseudo-experiments from a sampling of the theory covariance.

i For each pseudo-experiment we assign a weight to the event, based on it’s ∆φH−jj , corresponding to the
relative difference from the nominal cross section to the cross section of the pseudo-experiment in that
given bin of ∆φH−jj .

ii After applying a selection (MVA or cut based), the total uncertainty is retained by summing over all sets of
weights,

∆theory = max
i
{
∑

n

w i
n}

where the sum runs over all remaining events and i denotes one set.

Dag Gillberg, CERN 2012-11-27Systematics for MVA

Implementation of evt-by-evt theory errors

5

From binned to Event-by-Event uncertainties

* Fine, this gives us binned uncertainties in one or several variables.

* How can we apply this to events which will pass through an MVA?

� Create sets of event weights which probe surface of uncertainty ellipsoid

* Theory uncertainties are di�erent:
i Uniform prior
ii Hard cut-o� at ”1�”

* These sets take into account the correlations between ’bins’. Need large
number of sets to probe entire surface of theory ’ellipsoid’:

set #n

set #n+1

� Maxi { P
Evts wi } corresponds to the probed

NggF ±1�” boundary and total uncertainty.
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Generalization of the S/T Procedure to 3 and more bins
Frank, Florian, Shireen, Dag

* This procedure can be generalized for 3 or more bins: E.g. for a general variable x

R

R = �2(x
cut)

��2

��3(x
cut)

T = 
C = 

T  

x  

C 

R

C = A + B
R’ = T - B  = R + A  

A B
R’ B

⇥ Can calculate uncertainties for C and B ⇥ previous slide

� Covariance matrix can be determined up to correlation of A and B: vAB

�
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A vAB
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B

⇥
⌃⌃⌅

⇥ Need a model for vAB ; Approach can be generalized to any number of bins
⇤ # of model parameters scale as 1

2
((n2 � 3n) with n the number of bins
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Given a 22x22 (ΔΦ,ΔΦ) covariance 
matrix from Frank and Shireen
....

Florian has written code to generate 
toys that samples from this matrix, 
properly taking into account the 
correlations.

Shifts sampled from ellipsoid. Result:
multidimensional top-hat uncertainty

Note 1: no shape uncertainty available 
below 0.2

Note 2: This method can be used to 
calculate the theory uncertainty after any
arbitrary cut (both for MVA or cut-based)
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v.b Implementation via Event-by-Event weights

ø The binned approach uses the binned ∆φH−jj spectrum after the selection
and results in the same uncertainties.
The slight drawback is procedural: whereas the Event-by-Event uncertainties allow the determination of

the uncertainties for arbitrary cuts once the weights are calculated, the binned version requires a

reevaluation after every cut.

ø Further cross checks and some general remarks

* Check different Ansätze for correlations, impact of actual model seems small.
* The matrix describes the evolution of the MCFM uncertainty in IR sensitive regions; if one is

inclusive over these, the matrix reproduces the overall (inclusive) uncertainties.
* Using several IR sensitive variables would require a more complex matrix, which covers the 2D

phase space.

Comparison of Scale uncertainties:

Powheg+Pythia + Event-by-Event weights versus MCFM for ATLAS VBF Category:
mjj > 400 GeV; ∆ηjj > 2.8; ∆φH−γγ > 2.6

MCFM Our Method via Event-by-Event weights
25% 24.2 %

Differences in uncertainty entirely due to different shape of Powheg+Pythia v MCFM in ∆φH−jj
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vi. C++ Implementation

C++:

ø We are currently writing a stand-alone C++ class which use the inputs
from F.J. Tackmann und S. Gangal and calculates Event-weight or binned
uncertainties.

ø During initialization a set of pseudo-experiments is created from the
theory Covariance

ø Simple interface: one simply passes the truth ∆φH−jj of the events before
or after a cut to a function

ø Can in principle be used by other channels and groups as well

12 / 13



vii. Summary

Summary:

ø We showed a method how the cumulative uncertainties can be
transformed into differential uncertainties, using an underlying model for
the correlations which cannot be determined from first principles.

ø Using these differential uncertainties, one can determine the scale
uncertainties of a non-linearly selected region of phase-space using sets of
weights determined from pseudo-experiments generated by the theory
covariance.

ø The proposed method uses IR sensitive variables as a guideline for the
overall uncertainty, which seems a reasonable approximation as long as
one does not enter extreme regions of phase-space (e.g. very large mjj).
The shown results used ∆φH−jj , but the recoil pT of the Higgs+dijet system is also a good variable.

ø Allows consistent evaluation of scale uncertainties in the non-linear region
of phase-space a MVA selects.
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