$gg \rightarrow H + 2$ jets Theory Uncertainties in an MVA Setup

Florian Bernlochner, Dag Gillberg

University of Victoria, Canada CERN, Switzerland

January 25, 2013

Talk overview

- ϕ The challenge of estimating ggF+2 jets uncertainties with an MVA selection
- ø Generalization of the Stewart-Tackmann procedure
- **ø** Implementation in the MVA Analysis: Event-by-Event weights or Binned uncertainties
- \emptyset Comparison with pure MCFM and differences
- \emptyset C++ tool to use this

i. MVA Selection

ø Experimental situation: Want to achieve signal/background discrimination

from Nicolas Chanon

- ϕ Multivariate analyses use supervised learning to combine a given set of input variables into one discriminating classifier.
- Multivariate algorithms exploit correlations between variables better than rectangular cuts and achieve a better separation

ii. Uncertainties in a MVA Selection i. Music Selection Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contract
Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Co

- \emptyset Scale uncertainties of rectangular cuts can readily be checked using
MCFM MCFM Modulo the comparison of reco v true resolution of the cuts - **Possible solutions :** rectangular cuts, Fisher, non-linear contour
	- MVA selects non-linearly regions of phase-space:
		- * Formidable challenge to select same region with MCFM
		- * Our current method involves running MCFM for every working point

Systematic scans cost a lot

- * Differential uncertainties would be highly desirable!
- \rightarrow Propose Ansatz to generalize ST uncertainties to differential uncertainties

iii.a Recap of Stewart-Tackmann for $\Delta\phi_{H-jj}$ (See talk of S. Gangal for more

details) θ before going functions on θ does one get the uncertainties above?

 \rightarrow In ST procedure cross section divided as:

$$
\sigma = \int_{\Delta\phi}^{\pi} \frac{d\sigma}{d\phi} d\phi + \int_{0}^{\Delta\phi} \frac{d\sigma}{d\phi} d\phi
$$

∗ Exclusive 2jet cross section can be written as

$$
\sigma_2(\Delta\phi>\Delta\phi^{\rm cut})=\sigma_{\geq 2}-\sigma_{\geq 3}(\Delta\phi<\Delta\phi^{\rm cut})
$$

 $\sigma_{\geq 2}$: inclusive 2 jet cross section; $\sigma_{\geq 3}$: inclusive 3 jet cross section - here with cut on $\Delta\phi^\text{cut}$

***** $S/T: \sigma_{\geq 3}(\Delta \phi < \Delta \phi^{\text{cut}}$ and $\sigma_{\geq 2}$ assumed uncorrelated, elaborated in arXiv:1107.2117

∗ S/T ^σ≥3(∆^φ < [∆]φcut and ^σ≥² uncorrelated elaborated in arXiv:1107.2117 $\Rightarrow \Delta_2^2(\Delta \phi > \Delta \phi^{\text{cut}}) = \Delta_{\geq 2}^2 + \Delta_{\geq 3}^2(\Delta \phi < \Delta \phi^{\text{cut}})$

 \rightarrow Correlation completely determined: $\{\sigma_{\geq 2}, \sigma_{\geq 3}\}$

$$
\begin{pmatrix} \Delta_{\geq 2}^2 & \Delta_{\geq 2}^2 & 0 \\ \Delta_{\geq 2}^2 & \Delta_{\geq 2}^2 + \Delta_{\geq 3}^2 & -\Delta_{\geq 3}^2 \\ 0 & -\Delta_{\geq 3}^2 & \Delta_{\geq 3}^2 \end{pmatrix}
$$

 \rightarrow Obtain two 'Bins' which are anti-correlated with each other: $\{\sigma_2, \sigma_{\geq 3}\}$

iii.b Generalization of ST uncertainties to differential uncertainties

ø Generalization to differential uncertainties: Optimally we want to adapt an established

uncertainty scheme and convert them into something more differential. Input could be ST or other.

 $\sigma_{>2}(\Delta\phi > \Delta\phi^{\rm cut})$

 \emptyset Can use ST method to predict uncertainties for many different cuts:

i. Using different splittings one can formulate a number of boundary conditions for the total covariance between regions

ii. Unknown parameters in covariance matrix scale as $\frac{1}{2}(n^2 - n)$

iii. Assume a model with decreasing correlations

$$
\rho_{ij} \simeq 1 - \frac{1}{a} |\sigma_i - \sigma_j|
$$

 \cdots \rightarrow constraints on Covariance

iii.c Generalization of ST uncertainties to differential uncertainties

Sketch of a separation into three bins

Repeating this for three bins: $\{\sigma_T, \sigma_R, \sigma_A, \sigma_B\}$

$$
\begin{pmatrix} \Delta_{\widetilde{I}}^{2} & \Delta_{\widetilde{I}}^{2} & 0 & 0 \\ \Delta_{\widetilde{I}}^{2} & \Delta_{\widetilde{R}}^{2} & v_{CR} - v_{BR} & v_{BR} \\ 0 & v_{CR} - v_{BR} & \Delta_{\widetilde{A}}^{2} & v_{AB} \\ 0 & v_{BR} & v_{AB} & \Delta_{\widetilde{B}}^{2} \end{pmatrix}
$$

- ϕ The covariance matrix can be determined up to the correlation between regions A & B: v_{AB}
- \rightarrow Ansatz with a model using decreasing correlations: $1 \frac{1}{a} |\sigma_i \sigma_j|$

Procedure can be generalized to *n* bins with
$$
\frac{1}{2}(n^2 - n)
$$
 model parameters.

Thanks to S. Gangal, F.J. Tackmann for help and providing inputs!

iv. IR sensitive variables

- \emptyset Ideally one would want differential uncertainties in all variables of interest. I.e. in all variables that go into a MVA classifier
- ϕ Some variables are more relevant than others for the size of the overall $gg \rightarrow H+2$ jets uncertainties:
- MCFM Cumulant uncertainties for $\Delta\phi_{H-\tilde{H}}$ and the recoil p_T of the Higgs + dijet system

Plots shown by F.J. Tackmann und S. Gangal (in October Meeting)

 \rightarrow Results shown in the following use a single matrix in $\Delta \phi_{H-\ddot{H}}$.

vi. Validation via cumulants

Non-trivial test: Matrix based on MCFM in $\Delta\phi_{H-\hat{H}}$ and assign uncertainties to Pythia $gg \to H+2$ jets (with second jet from parton shower);

ø Cumulants for cuts on $\Delta \phi_{H-j}$ and recoil p_T of the Higgs + dijet system: ATLAS jet selection applied; $m_{jj} >$ 400 GeV/ c^2 , $\Delta \eta_{jj} >$ 2.8

i. Reproduce MCFM uncertainties fairly well for $\Delta\phi_{H-\text{ii}}$ cuts.

Observed differences are due to using MCFM uncertainties on the Pythia shape of $\Delta\phi_{H-\ddot{H}}$.

ii. Reproduce MCFM uncertainties also well in recoil p_T ; but we used $\Delta\phi_{H}-\mu$ differential uncertainties as input!

v.a Event-by-Event weights or Binned Uncertainties

ø Ideally: assign an uncertainty for the scale variations to each event.

Looked into two approaches: Event-by-Event weights and a binned approach:

- ø Can be done by generating a set of pseudo-experiments from a sampling of the theory covariance.
- For each pseudo-experiment we assign a weight to the event, based on it's $\Delta\phi_{H}-_{ii}$, corresponding to the relative difference from the nominal cross section to the cross section of the pseudo-experiment in that given bin of $\Delta \phi_{H \text{−} ii}$.
- ii After applying a selection (MVA or cut based), the total uncertainty is retained by summing over all sets of weights,

$$
\Delta_{\text{theory}} = \max_{i} \{ \sum_{n} w_n^i \}
$$

where the sum runs over all remaining events and *i* denotes one set.

 π - $\Delta\Phi$

v.b Implementation via Event-by-Event weights

 ϕ The binned approach uses the binned $\Delta\phi_{H-\tilde{u}}$ spectrum after the selection and results in the same uncertainties.

The slight drawback is procedural: whereas the Event-by-Event uncertainties allow the determination of the uncertainties for arbitrary cuts once the weights are calculated, the binned version requires a reevaluation after every cut.

ϕ Further cross checks and some general remarks

- * Check different Ansätze for correlations, impact of actual model seems small.
- * The matrix describes the evolution of the MCFM uncertainty in IR sensitive regions; if one is inclusive over these, the matrix reproduces the overall (inclusive) uncertainties.
- * Using several IR sensitive variables would require a more complex matrix, which covers the 2D phase space.

Comparison of Scale uncertainties:

Powheg+Pythia + Event-by-Event weights versus MCFM for ATLAS VBF Category: $m_{ii} > 400$ GeV; $\Delta \eta_{ii} > 2.8$; $\Delta \phi_{H-\gamma} > 2.6$

Differences in uncertainty entirely due to different shape of Powheg+Pythia v MCFM in $\Delta \phi_{H \text{--}ji}$

vi. C++ Implementation

$C++$

- \emptyset We are currently writing a stand-alone C++ class which use the inputs from F.J. Tackmann und S. Gangal and calculates Event-weight or binned uncertainties.
- ϕ During initialization a set of pseudo-experiments is created from the theory Covariance
- **ø** Simple interface: one simply passes the truth $\Delta \phi_{H}-i$ of the events before or after a cut to a function
- ϕ Can in principle be used by other channels and groups as well

vii. Summary

Summary:

- ϕ We showed a method how the cumulative uncertainties can be transformed into differential uncertainties, using an underlying model for the correlations which cannot be determined from first principles.
- \emptyset Using these differential uncertainties, one can determine the scale uncertainties of a non-linearly selected region of phase-space using sets of weights determined from pseudo-experiments generated by the theory covariance.
- ϕ The proposed method uses IR sensitive variables as a guideline for the overall uncertainty, which seems a reasonable approximation as long as one does not enter extreme regions of phase-space (e.g. very large m_{ii}).

The shown results used $\Delta \phi_{H-j}$, but the recoil p_T of the Higgs+dijet system is also a good variable.

ø Allows consistent evaluation of scale uncertainties in the non-linear region of phase-space a MVA selects.