Top Quark Production and Final State Kinematics

Theoretical and experimental summary for Snowmass 2013

A. Ferroglia, A. Jung and M. Schulze

Top Quark Production & Final State Kinematics

- Theory aspects of ttbar, single top, associated production beyond the leading order
- Review of experimental results

Top Quarks as Final States

- A complete description of top pair production requires the consideration of both the production of the top pair and the top quark decay.
- Inclusive observables such as the total pair production cross section and several distributions can be evaluated by considering top quarks to be **on-shell stable** particles.

Total Pair Production CS

- The precision with which the total CS is measured requires to go beyond NLO+NLL accuracy
- approximate NNLO/NNLL resummation available in several approaches; perturbative uncertainty ~ 5 % (Moch, Uwer ('08), Langenfeld et al ('09), Aliev et al ('10), Beneke et al. ('10), Ahrens et al. ('11), ...)
- Full NNLO corrections evaluated in the quark annihilation and qg channels; gg channel available soon (Baernreuther et al ('12), Czakon, Mitov ('12), Czakon et al. ('13))

Distributions

- NNLL resummation/approximate NNLO predictions are available for pair invariant mass , top-quark pT and rapidity, and pair pT distributions (Ahrens et al ('09,'10), Ahrens et al ('11), Aliev et al, Kidonakis ('10, '11), Zhu et al ('12)...): good agreement with available data
- Studies of the kinematic regions where $M_{t\bar{t}} \gg m_t$ are in progress (Ferroglia et al ('12))
- Mixed EW/QCD and soft gluon emission corrections do not explain the FB asymmetry tension (Pagani, Hollik ('11) Kuhn, Rodrigo ('11), Ahrens et al ('11))

Future directions:

- Full calculation of the NNLO corrections to the total cross section. The missing gg channel should be soon available (Czakon et al. ('13)).
- A full evaluation of the NLO (α_s^2) corrections to the Tevatron FB asymmetry is possible: it requires the evaluation of two loop diagrams only in the quark-annihilation channel

- Important for a proper simulation of selection cuts and for a precise description of kinematic variables of the top decay products.
 (Even measurements of the total cross section are sensitive to those effects through the acceptance function)
- In recent years significant progress has been made in advancing higher order corrections towards a more realistic modeling of top decays.
- NLO simulation tools mainly differ by their treatment of higher order corrections and spin correlations in the decay matrix elements

positive weight MC's: MC@NLO, POWHEG (Frixione *et.al.*) weighted event MC's: MCFM, "private" codes (Bernreuther *et al.*, Melnikov *et al.*, Bevilacqua *et al.*, Denner *et al.*)

• A wide variety of important physics results have emerged from those calculations.

A few examples include:

- NLO (QCD+el.weak) predictions for pT(l), phi(ll), m(lb)
- top quark spin correlations
- leptonic AFB
- mt determination from kinematic distributions
- study of finite-width and bottom mass effects

Lepton, jet, missing energy observables

Spin Correlations

[Mahlon,Parke], [Melnikov, M.S.]

Lepton A_{FB} + el.weak corrections

	- sware	with cuts	without cuts
A^{ℓ} (%)	QCD:	3.0 (3)	3.1 (3)
	QCD + EW:	3.6 (2)	3.8 (3)
A^{ℓ} (%)	QCD:	5.2 (5)	5.8 (5)
$(M_{ti} \ge 450 \text{ GeV})$	QCD + EW:	6.4 (5)	7.0 (5)
A^{ℓ} (%)	QCD:	1.6 (1)	1.5 (1)
$(M_{tl} < 450 \text{ GeV})$	QCD + EW:	1.9 (1)	1.8 (1)
A^{tt} (%)	QCD:	4.0 (4)	4.0 (4)
	QCD + EW:	4.8 (4)	4.8 (4)
$A^{\ell\ell}$ (%)	QCD:	7.0 (6)	6.3 (6)
$(\Delta y_\ell \ge 1)$	QCD + EW:	8.5 (6)	7.5 (6)
$A^{\ell\ell}$ (%)	QCD:	1.9 (2)	1.6 (1)
$(\Delta y_\ell < 1)$	QCD + EW:	2.3 (2)	1.9(2)
A^{H} (%)	QCD:	6.7 (5)	7.1 (6)
$(M_{t\bar{t}} \ge 450 \text{ GeV})$	QCD + EW:	8.2 (5)	8.7 (6)
A^{II} (%)	QCD:	2.3 (2)	2.0(2)
$(M_{t\bar{t}} < 450 \text{ GeV})$	QCD + EW:	2.7 (2)	2.3(2)

[Bernreuther,Si] [Kühn,Scharf,Uwer]

Finite width effects

Mass determination from kinematic distributions

Finite bottom quark mass effects

[Denner,Dittmaier,Kallweit,Pozzorini] [Bevilacqua,Czakon,v.Hameren,Papadopolous,Worek]

Top quark decay at NNLO QCD

Fully differential NNLO QCD correction based on SCET [Jun Gao, Chong Sheng Li, Hua Xing Zhu] (2012)

$$\Gamma_t = \int_0^{\tau_0} \mathrm{d}\tau \frac{\mathrm{d}\Gamma_t}{\mathrm{d}\tau} + \int_{\tau_0}^{\infty} \mathrm{d}\tau \frac{\mathrm{d}\Gamma_t}{\mathrm{d}\tau} := \Gamma_A + \Gamma_B \qquad \tau = (p_b + p_X)^2 / m_t^2$$

if τ_0 is chosen small enough:

 $\Gamma_A \sim \mathcal{H}(x,\mu) \otimes J(m^2,\mu) \otimes S(k,\mu)$ can be calculated from SCET results Γ_B can be calculated from NLO QCD corrections to $t \to Wb$ +jet

					_
$\Gamma_t^{(0)}$	δ_f^b	δ_f^W	δ_{EW}	$\delta^{(1)}_{QCD}$	$\delta^{(2)}_{QCD}$
1.4806	-0. <mark>2</mark> 6	-1.49	1.68	-8.58	-2.09
1.5109	-0.26	-1.49	1.69	-8.58	-2.09
1.5415	-0.25	-1.48	1.69	-8.58	-2.09
			~		
eV		3	percen	ıt	
	$\Gamma_t^{(0)} \\ 1.4806 \\ 1.5109 \\ 1.5415 \\ \hline V \\ eV$	$ \begin{array}{c c} \Gamma_t^{(0)} & \delta_f^b \\ 1.4806 & -0.26 \\ 1.5109 & -0.26 \\ 1.5415 & -0.25 \\ \hline V \\ \hline V \end{array} $	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Possible future directions:

- Combination of NNLO QCD calculation for ttbar production process with decay at the same order in perturbation theory
- Merging and matching different jet samples at NLO QCD
- Inclusion of New Physics effects for some of the most robust models, such as Z' / g' ->ttbar, T' Tbar', t->H+b, stop->Chi+ t, T'-> X + t

Associated production processes

ttb +H, Z, gamma,W, jets

- Some processes have never been observed at the Tevatron
- Study allows determination of top quark couplings

ttb+H: sensitive to yt and Higgs parity ttb+Z, gamma: el.weak couplings of top quark

 NLO predictions exist for all those processes and extensive studies of sensitivity reach have been performed at LO --> should be repeated at NLO precision

Associated production processes

• Other processes such as

ttbar+W, ttbar+bbbar, ttbar+jet(s) are mostly background to New Physics searches. Some need to be extended to include top quark decays to accommodate harsh experimental selection cuts.

Possible future directions:

- Electroweak corrections
- Precision studies, cross section ratios sigma(ttb+V) / sigma(ttb)
- ttb+(Z-->nu nu) as background to New Physics searches

Single Top Production

- NLO QCD corrections are available for all of the three production mechanisms (t-channel, s-channel, associated tW production)
- NLO/QCD corrections to the (dominant) t-channel are of moderate size (~5% at the Tevatron, ~ 10 % at the LHC)
- NNLL resummation and/or approximate NNLO corrections became recently available (Zhu et al ('10), Kidonakis ('10,'11,'12))

Possible future directions:

• rare processes: single top + Z, H

Top quark distributions at Tevatron & LHC

- Choice of unfolding data to parton or hadron level, important to define a kinematic range !
- Meanwhile a wealth of measurements exists: $\overset{\mathfrak{F}}{\underline{s}}$

data NLO (MCFM)

ALPGEN

L dt = 2.05 fb

Top quark distributions at **Tevatron & LHC**

0.7

CMS TOP-11-013

CMS unfolds to parton level and full phase space using regularized matrix unfolding while leptons, b quarks are corrected to visible phase space

 $\frac{1}{\overline{\sigma}} \frac{d\sigma}{dp_{t\bar{t}}^{t\bar{t}}} [GeV^{-\bar{t}}]$

CMS, 5.0 fb⁻¹ at vs = 7 TeV

CMS. 5.0 fb⁻¹ at vs = 7 TeV

10×10

Data are usually nicely described by various models at NLO or approx. NNLO

Top quark asymmetries at **Tevatron & LHC** DØ L=5.4 fb⁻¹ 400 (b)300 Events 200 (-> see Talk by S.Westhoff)

Puzzling situation, calls for measuring asymmetries of top (b's), leptons in various channels at both colliders

Powheg parton level

0

cos θ

-05

100

0

Data

Z' M=900GeV

Background

05

Top quarks in association with other particles

- Hottest topic clearly ttH only limits exist so far
- ttV, V=gamma, Z, W and also tt+g (->bb) measurements PRD 84 031104 exist

Total

(-> see Talk by A.Loginov)

Outlook / What can be done...

- More precise differential measurements in near futuremake use of the top tagging !
- Consider and correct data for kinematic region of the measurement: Applies to all types of differential measurements: xsecs, asymmetries, polarization, etc.
- Possible studies: Look at / Cover 'extreme' phase space corners to understand different effects currently limiting precision in top measurements