

Top Quark Couplings: Experiment

J.Adelman, B.A.Gonsalez, A.Khanov, <u>A.Loginov</u>

Snowmass Energy Frontier Top Group Meeting Jan 30 2013

LHC and Tevatron

- Tevatron = Top discovery machine
 - 1.96 TeV proton-antiproton machine
 - In some of the results presented Tevatron still holds the first place
- LHC = Top factory
 - -7, 8 and beyond (design energy 14) TeV
 - In 7 and 8 TeV operation delivered ~2 orders of magnitude more top quarks than at the Tevatron
 - Sensitive to some of the top couplings already, and need more energy / data to get more
- Reference document for the presentation

http://www.snowmass2013.org/tiki-download_file.php?fileId=40 Jan 30 2013

- The top-quark can be produced singly by an electroweak **Wtb**-vertex
- Motivation
 - Complementary information on top-quark properties
 - Direct measurement of the CKM matrix element V_{tb}
 - Sensitive to many models of new physics
 - Information on the b-quark PDF

Single top: t-channel

- Method
 - ATLAS: binned maximum likelihood fit to the NN output distribution
 - CMS: eta distribution of the recoil jet
- Measurement
 - ATLAS: 95 ± 18 pb, V_{tb} = 1.04 +0.10/-0.11
 - CMS: 80.1 ± 5.7(stat) ± 11.0(syst) ± 4.0(lumi) pb, V_{tb} > 0.81 @ 95% CL
- Dominant Systematics
 - ATLAS: Jet Energy Scale (JES), b-tagging, and ISR/FSR
 - CMS: statistical, JES, t-chan generator

Single top: Wt-channel

- Negligible @ Tevatron, 2nd highest single top xsec @ LHC
- Evidence for Wt @ 7 TeV (both used Template fit to a BDT g output)
 - ATLAS: 3.3 sigma, 16.8 ± 2.9(stat) ± 4.9(syst) pb
 - CMS: 4.0 sigma, 16.4 +5/-4 pb
- Dominant Systematics
 - ATLAS: Jet Energy Scale (JES), statistics, and ISR/FSR
 - CMS: JES, statistics, factorization/renormalization scale

Single top: s-channel

- Negligible @ LHC, 2nd highest single top xsec @ Tevatron
- Measurements from CDF and Dzero
 - Measure xsec for t-channel and s-channel together, then extract the components
 - CDF: 1.81 +0.63/0.58 pb, CDF Note 10793

http://www-cdf.fnal.gov/physics/new/top/confNotes/cdf10793 SingleTop 7.5 public.pdf

- DZERO: 0.68 +0.38/-0.35 pb, Phys.Rev. D84 (2011) 112001
- **Dominant Systematics**
 - CDF: background normalization
 - DZero: JES, JER, corrections to b-tagging efficiencies, and the correction for jet-flavor composition in W+jets events

ttbar + Photon

- Sensitive to top charge and to top-photon couplings
 - Need to identify photons coming from top
 - Suppress photons from W, leptons, jets (gg fusion ttbar production dominates @LHC => less ISR QED)
- Control sample / Background to ttbar + Higgs, Higgs to diphoton
- For now can only measure the cross section
 - CDF: first evidence of ttbar + photon production (using **6 fb**⁻¹ of data)
 - Dominated by stat. uncertainty
 - ATLAS: preliminary measurement with **1 fb**⁻¹ (but still below 3 sigma significance)

Dominated by systematics: photon ID, ISR/FSR, jet Jan 30 2013 energy scale

min

000000

ttbar + Photon: Results

ATLAS, ATLAS-CONF-2011-153 $\sigma_{t\bar{t}\gamma} = 2.0 \pm 0.5 \ (stat.) \pm 0.7 \ (syst.) \pm 0.08 \ (lumi.) \text{ pb}$ $2.1 \pm 0.4 \text{ pb}$ (Theory)

ttbar + Photon: Outlook

- With current 2011 / 2012 data
 - Should be able to measure ttbar + photon cross section with 5+ sigma significance
 - Can play around with ΔR (photon, X) cuts to isolate photons coming from top, Phys.Rev. D71 (2005) 054013
- 7 -> 14 TeV: LO cross section increases by a factor of 5 (MadGraph, photon p_T > 20 GeV)
 - 300 fb⁻¹: few thousands events expected => can go for couplings measurement, Phys.Rev. D71 (2005) 054013
 - In both lepton + jets and dilepton channels
 - **3000 fb⁻¹**: differential measurements (couplings as a function of photon p_T etc)

vvvvvv

000000

ttbar + Z: Outlook

- With current 2011 / 2012 data
 - 7 -> 8 TeV: ttZ LO cross section increases by a factor of 1.4 (MadGraph)
 - Stat. uncertainty will decrease by a factor of **2.5**
 - Still limited by statistics
- 7 -> 14 TeV: LO cross section increases by a factor of 10 (MadGraph)
 - **300 fb**⁻¹: ttZ axial (vector) couplings can be determined with an uncertainty 45-85% (15-20%), Phys.Rev. D71 (2005) 054013
 - **3000 fb**⁻¹: a factor of **3** better

ttbar + Higgs

- ttbar + Higgs => square of top Yukawa coupling
 - One of the key points of Higgs physics program
- Tevatron (CDF)
 - Searches in lepton + jets and all-hadronic channel. Multivariate techniques.
 - Lepton+jets: Observed (expected) limit = 20.5 (12.6) x SM
 Phys.Rev.Lett. 109 (2012) 181802
 - O-lepton: Observed (expected) limit = 36.2 (26.2) x SM
 CDF note 10582

http://www-cdf.fnal.gov/physics/new/hdg/Results_files/results/tthNoLepton_110708/

• LHC

Jan 30 2013

- CMS: analyzed both dilepton and lepton + jets channels:
 observed (expected) limit 4.6 (3.8) x SM, CMS-PAS-HIG-12-025
- ATLAS: analyzed lepton + jets channel:

observed (expected) limit = 13.1 (10.5) x SM, ATLAS-CONF-2012-135

ttbar + Higgs: Outlook

 Will profit from increased energy, statistics, as well as better understanding of backgrounds: ttbar + bbbar, ttbar + (di)photon

 $g_{HXX} = g_{HXX}^{SM} \ (1 + \Delta_X)$

ATLAS:

 $gg \rightarrow H$ $qq \rightarrow qqH$

 $gg \rightarrow t\bar{t}H$ $aa' \rightarrow VH$

Higgs partial widths ratio (Γt/Γg) measurement precision to better than **55**% (**25**%) with **300** (**3000**) **fb**⁻¹, **ATL-PHYS-PUB-2012-004**

– ttbar+Higgs, Higgs -> diphoton/dimuon

Jet Multiplicity in Top Pair Events

- Motivation
 - Constrain ISR/FSR models at the scale of the top quark mass
 - Test perturbative QCD in the LHC energy regime
- Lepton + Jets channel (ATLAS), Dilepton channel (CMS)
 - Jet multiplicities as a function of jet p_T thresholds:
 - ATLAS: 25, 40, 60 and 80 GeV, ATLAS-CONF-2012-155
 - CMS: 30 and 60 GeV, CMS-PAS-TOP-12-023
 - Subtract backgrounds and unfold to particle level
 - Account for detector efficiencies, resolution effects and biases
 - Dominated by systematics in all regions
 - Compare to various Monte Carlo simulation models
 - ALPGEN+HERWIG
 - ALPGEN+PYTHIA (α_s -down and α_s -up variations)
 - MC@NLO+HERWIG
 - POWHEG+PYTHIA
 - MadGraph + PYTHIA

Jet Multiplicity in Top Pair Events: Unfolded

ATLAS-CONF-2012-155 ATLAS Disfavored:

- MC@NLO + Herwig
- ALGPEN+Pythia with α_s -up variation

CMS Preliminary, 5.0 fb⁻¹ at \sqrt{s} =7 TeV

CMS-PAS-TOP-12-023 CMS Disfavored:

• MC@NLO + Herwig

Jan 30 2013

arXiv:1203.5015 ttbar with Jet Veto: ATLAS

- Gap fraction f(x) = n(x)/N
 - N is the total number of selected ttbar events
 - n(x) is the N (ttbar events with additional jet veto)
 - x = Q₀: no additional jets with p_T > Q₀in a rapidity interval (CMS calls the variable p_T)
 - $\mathbf{x} = \mathbf{Q}_{sum}$: the scalar sum of the additional jets' p_T in the rapidity interval < Q_{sum} (CMS calls the variable H_T)
- Senstive to
 - ISR / FSR
 - Effects of different shower models
 - Higher order effects of different generators
- Conclusions (ATLAS, lepton + jets channel)
 - MC@NLO underestimates the data in the central region |y| < 0.8
 - All models describe data in the full |y|<2.1 veto interval, but tend to predict too much jet activity

ttbar with Jet Veto: CMS

- Conclusions (CMS, dilepton channel)
 - MC@NLO gives the best prediction
 - Increasing Q² scale in MadGraph improves the data/MC agreement
- Overall comment
 - Already dominated by systematics both for ATLAS and CMS
 - With more data can go into more details

ttbar+jets HF Composition: CMS

Motivation:

- ttbar+Higgs is important channel for measurement of top quark to Higgs boson coupling
- Irreducible background from ttbar in association with bbbar as predicted by higher order QCD
- Measure cross section ratio for uncertainties to cancel, e.g. luminosity, jet and lepton efficiencies

• Method:

- Fit to the b-tagged jet multiplicity distribution
- Dominant Systematic Uncertainties:
 - b-tag scale factor (18%), Q2 scale (6%), MC (3%)

 $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(stat.) \pm 0.9(sys.)\%$

Top quark + jets: Outlook

- More statistics / more energy
 - Detailed understanding of top pair production with jets
 - Reduce systematics report ratios of multiplicites
 - Finer binning (as stat.uncertainty is not an issue)
 - Feedback to theory community
 - Better precision SM predictions for beyond-the-SM searches
- For rare processes (ttbar + Heavy Flavor)
 - More statistics will help
 - Can measure ccbar and bbbar separately
 - Expect input from theory community
 - NLO calculation is challenging...

Summary / Outlook

- LHC keeps providing top quarks in unprecedented quantities
- Precision measurements, detailed studies, improving of **understanding** of the heaviest known particle and its properties
- We will learn a lot in the years to come...

- ... if we better plan it, we will learn even more ;)

Jan 30 2013

Top pair production at ATLAS

LHC / ATLAS

Large Ha∆Ron Collider

- p-p collider
- Center of mass energy
 - √s = 7 TeV @ 2010-11
 - √s = 8 TeV @ 2012
 - √s = 13-14 TeV @ 2014+
- Multi-purpose experiments:
 ATLAS and CMS

Width = 44 m, Diameter = 22 m

Tile calorimeters

LAr hadronic end-cap ar forward calorimeters

LAr electromagnetic calorimeters

Transition radiation tracker

Pixel detector

Semiconductor tracker

Subdetectors and identified objects:

Solenoid magnet

- Trackers:electrons, muons, jets, taus, photons
- Calorimeters:electrons, muons, jets, taus, photons
- Muon Detectors: muons

Toroid magnets

Muon chambers

owmass Energy Frontier Top Group Meeting

Snowmass Energy Frontier Top Groub Meeting

