

The Lancaster, Manchester, Sheffield Consortium for Fundamental Physics

Overview of MC Models

dra

Monte

Carlo

net

Michael H Seymour University of Manchester MPI@LHC 2013, Antwerp 2/12/13

Overview of MC Models of MPI

Mike Seymour

Overview of MC Models of MPI

- Herwig++
- Pythia 8
- Sherpa → Korinna Zapp
- DIPSY → Leif Lönnblad
- EPOS \rightarrow MPI@LHC 2012

MPI Model Basics (Herwig & Pythia)

- Matter distributions
- Model of low-p_t scattering
- Colour connections

Matter Distributions

Usually assume x and b factorize (→ see later)

$$n_i(x,b;\mu^2,s) = f_i(x;\mu^2) G(b,s)$$

and *n*-parton distributions are independent (→ see later)

$$n_{i,j}(x_i, x_j, b_i, b_j) = n_i(x_i, b_i) n_j(x_j, b_j)$$

• ⇒ scatters Poissonian at fixed impact parameter

$$\sigma_n = \int d^2b \, \frac{(A(b)\sigma^{inc})^n}{n!} \exp(-A(b)\sigma^{inc})^n$$

Mike Seymour

$$A(b) = \int d^2b_1 G(b_1) \, d^2b_2 G(b_2) \, \delta(b - b_1 + b_2)$$

Aside 1: Inclusive Cross Sections

Defining cross section inclusively:

$$\sigma_{incli} \equiv \frac{N_{\rm i}}{\mathcal{L}}$$

• Reproduces partonic cross section:

$$\sigma_{incli} = \sum_{n} n \, \sigma_{ni}$$
$$= \sigma_{i}$$

• see MHS & A. Siodmok: arXiv:1308.6749

Aside 1: Inclusive Cross Sections

• Analogous double-inclusive cross section is:

$$\frac{\sigma_{inclii} = \sum_{n} \frac{1}{2}n(n-1)\sigma_{ni}}{\sigma_{inclij} = \sum_{n,m} n m \sigma_{ni,mj}}$$

$$\sigma_{inclii} = \frac{1}{2}\sigma_{i}^{2}\int d^{2}b A(b)^{2}$$
$$\sigma_{inclij} = \sigma_{i}\sigma_{j}\int d^{2}b A(b)^{2}$$

$$\sigma_{eff} = \frac{\sigma_{incli}^2}{2\sigma_{inclii}} = \frac{\sigma_{incli}\sigma_{inclj}}{\sigma_{inclij}} = \frac{1}{\int d^2b A(b)^2}$$

Mike Seymour

Aside 1: Inclusive Cross Sections

 Other cross section definitions do not give process-independent A(b)!

The Herwig++ Model (formerly known as Jimmy+Ivan)

• Take eikonal+partonic scattering seriously

$$\sigma_{tot} = 2 \int d^2 b \left(1 - e^{-\frac{1}{2}A(b)\sigma_{inc}} \right)$$
$$B = \left[\frac{d}{dt} \left(\ln \frac{d\sigma_{el}}{dt} \right) \right]_{t=0} = \frac{1}{\sigma_{tot}} \int d^2 b \, b^2 \left(1 - e^{-\frac{1}{2}A(b)\sigma_{inc}} \right)$$

• given form of matter distribution \Rightarrow size and σ_{inc}

Bähr, Butterworth & MHS, JHEP 0901:067, 2009

• too restrictive \Rightarrow

$$\sigma_{tot} = 2 \int d^2 b \left(1 - e^{-\frac{1}{2} (A_{\text{soft}}(b)\sigma_{\text{soft,inc}} + A_{\text{hard}}(b)\sigma_{\text{hard,inc}})} \right)$$

• \Rightarrow two free parameters

The Herwig++ Model

$$^{\mathrm{in}}(s) = p_{\perp,0}^{\mathrm{min}} \left(\frac{\sqrt{s}}{E_0}\right)^b$$

• see A. Siodmok's talk \rightarrow

The Pythia Model

- Double Gaussian matter distribution
- Replace σ_{tot} by σ_{NSD}
- Consider x-dependent matter distribution

x-dependent matter distributions

- Most existing models use factorization of x and b
 - or (Herwig++) crude separation into hard and soft components (simple hot-spot model)
- R.Corke and T.Sjöstrand, arXiv:1101.5953 consider Gaussian matter distribution with width

Figure 1: (a) The rise of the total and non-diffractive pp cross section with energy, and (b) the ratio $a_0(E_{\rm CM})/a_0(200 \,{\rm GeV})$, over the same energy range, for a set of different a_1 values

x-dependent matter distributions

- Most existing models use factorization of x and b
 - or (Herwig++) crude separation into hard and soft components (simple hot-spot model)
- R.Corke and T.Sjöstrand, arXiv:1101.5953 consider Gaussian matter distribution with width

$$a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x} \right)$$

for a₁≈0.15, matter distribution can be E-indep

MPI Model Basics (Herwig & Pythia)

- Matter distributions
- Model of low-p_t scattering
- Colour connections

Low p_t scattering - Pythia

 Use perturbative cross sections right down to p_t=o, with regulator p_{to}

Pythia implementation

(4) Evolution interleaved with ISR

Transverse-momentum-ordered showers

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}}\right) \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p'_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p'_{\perp}}\right) \mathrm{d}p'_{\perp}\right)$$

with ISR sum over all previous MI

(5) Rescattering

Low p_t scattering - Herwig

 View p_{t,min} as a transition scale between hard and soft scatters...

Final state implementation

- Pure independent perturbative scatters above PTMIN
- Gluonic scattering below PTMIN with total $\sigma_{\text{soft,inc}}$ and Gaussian distribution in p_t
- $d\sigma/dp_t$ continuous at PTMIN

→ possibility that entire process could be described perturbatively?

MPI Model Basics (Herwig & Pythia)

- Matter distributions
- Model of low-p_t scattering
- Colour connections

Colour correlations

Mike Seymour

Herwig - colour reconnection model

- Röhr, Siodmok and Gieseke implemented new model based on momentum structure
- Refit LEP-I and LEP-II data
- Conclusion: hadronization parameters correlated with reconnection probability, but good fit can be obtained for any value of p_{reco}

Mike Seymour

Description of Data...

• Not a review, but some snapshots...

Underlying Event (Trans region)

Minimum bias events

Herwig too flat for soft hadrons

Mike Seymour

Minimum bias events

increasingly so for very soft hadrons

Mike Seymour

Minimum bias events

Mike Seymour

Herwig's dirty laundry...

- Forward gaps:
 - Takes eikonal model seriously ⇒ should produce all inelastic events, including diffractive
 - but no diffractive model! \rightarrow in progress
 - 2. Despite this, produces too many rapidity gaps

Forward rapidity gaps distn.

Forward rapidity gaps distn.

- "Bump" events are only those with no hard scatters
 - related to colour structure of soft scatters?
 - colour connection between soft and hard scatters?

Herwig 2.7.0

- released 25 Oct 2013
- an interface to the Universal FeynRules Output (UFO) format allowing the simulation of a wide range of new-physics models;
- developments of the Matchbox framework for next-to-leading order (NLO) simulations;
- better treatment of QCD radiation in heavy particle decays in newphysics models;
- a new tune of underlying event and colour connection parameters that allows a good simultaneous description of both Tevatron and LHC underlying event data and the effective cross-section parameter for double-parton scattering.

Summary

 (Herwig and Pythia) MPI models well developed and describe underlying event data well

- also $\sigma_{eff} \rightarrow A$. Siodmok

- Herwig some problems for min bias
 - increasingly so for very soft events, and very gappy events
- Data increasingly sensitive probe of colour structures and connections

Aside 2: A(b) definitions

• Recall
$$\sigma_{ij} = \int \sigma_i \, \sigma_j \, A(b)^2 \, \mathrm{d}^2 b$$

 = convolution over two xs and two bs in each hadron

 $\int A(b)^2 d^2b = \int d^2b_1 G(b_1) d^2b_2 \overline{G(b_2)} d^2b_3 G(b_3) d^2b_4 G(b_4) d^2b \,\delta(b-b_1+b_2)\delta(b-b_3+b_4)$

identical to convolution over two bs in the same hadron

 $\int A(b)^2 d^2b = \int d^2b_1 G(b_1) d^2b_3 G(b_3) \,\delta(B - b_1 + b_3) d^2b_2 G(b_2) d^2b_4 G(b_4) \,\delta(B - b_2 + b_4) d^2B$ $= \int A(B)^2 d^2B$ MPI@LHC2013

Aside 2: A(b) definitions

Aside 2: A(b) definitions

• *A*(*B*) is a single-hadron property

 $n(x_1, x_3, b_1, b_3) = f(x_1)G(b_1)f(x_3)G(b_3)$

• natural framework to include correlations $n(x_1, x_3, b_1, b_3) = f(x_1) f(x_3) G(b_1, b_3)$

• but extension to triple- scattering (and higher)?

Mike Seymour