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Motivation

Studies of small x "unintegrated" gluon densities in more exclusive observables

Different evolution scenarios

• BFKL

• KMS (Kwieciński-Martin-Staśto) = BFKL + DGLAP unified framework

• BK (Balitsky-Kovchegov) ⇒ saturation

• KS (Kutak-Staśto) = BK + DGLAP

• CCFM

• KGBJS (Kutak-Golec-Biernat-Jadach-Skrzypek) = CCFM + nonlinear term

Some of them may be applied to heavy ions.

• relevant observables ⇒ forward jets

• three jets

→ very exclusive
→ test high energy factorization for larger multiplicities
→ test tools we have developed
→ give (crude) predictions for LHC

2



Framework



Framework
"Hybrid" high energy factorization formula1,2

dσAB→X =
∑

b

∫
d2kT A

π

∫
dxA

xA

∫
dxB F (xA , kT A) fb/B (xB , µ) dσg∗b→X (xA , xB , kT A )

+ . . . +HARD

...

pA

pB

kA

kB

HARD

· · ·
...

k µA = xA pµA + k µT A , k µB = xB pµB + k µT B ∼ xB pB , xA ≪ xB

• collinear PDFs fb/B (xB , µ)

• unintegrated gluon PDF F (xA , kT A )

• off-shell gauge invariant tree-level matrix element resides in dσg∗b→X

Implemented in MC codes: C++ code LxJet (dijets, trijets), fortran code of A.
van Hameren (any process) – OSCARS (Off-shell Currents And Related Stuff))

⋆ in general TMD factorization does not hold for hadron-hadron collisions,
but here just single TMD PDF⇒ needs more study

1 S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135-188
2 M. Deak, F. Hautmann, H. Jung, K. Kutak, JHEP 0909 (2009) 121 4



Framework: off-shell amplitudes

One-leg off-shell high-energy amplitudes

+HARD

...

kA

kB

terms needed
to maintain gauge
invariance

eikonal
coupling: = |~kT A| p

µ
A

• basic approach: Lipatov’s effective action and resulting Feynman rules1

• one can also find the lacking contributions without extending QCD action
(suitable for automatic calculation)

→ by embedding in a larger non-physical process; also for two off-shell
legs and off-shell quarks⇒ very general and powerful2

→ using the Slavnov-Taylor identities (only one off-shell gluon)3

→ using matrix elements of straight infinite Wilson lines (arbitrary
number of off-shell gluons)

1 E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135
2 A. van Hameren, P. Kotko, K. Kutak, JHEP 1301 (2013) 078; A. van Hameren, K. Kutak, T. Salva, arXiv:1308.2861
3 A. van Hameren, P. Kotko, K. Kutak, JHEP 1212 (2012) 029
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Framework: unintegrated gluon densities

• in the high-energy factorization originally BFKL gluon evolution was used
⇒ why not to try to include more subtle effects relevant to small x?

• nonlinear evolution with saturation1,2 fitted to HERA data3
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→ includes kinematic constraints
→ includes non-singular pieces of the splitting functions
→ the coupling is running
→ the parameter R has an interpretation of a target radius
⇒ one may attempt to use it for nuclei3

1 K. Kutak, J. Kwiecinski, Eur.Phys.J. C29, 521 (2003)
2 K. Kutak, A. Stasto, Eur.Phys.J. C41, 343 (2005)
3 K. Kutak, S. Sapeta, Phys.Rev. D86, 094043 (2012) 6
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Results: process definition and cuts
Basic setup:

• p-p and p-Pb collisions

• CM energy 5 TeV and 7 TeV

• pT 1 > pT 2 > pT 3 > pT cut

• anti-kT clustering with R = 0.5

• collinear PDF⇒ CTEQ10 NLO set, scale choice µ = a (E1 + E2 + E3),
where the variation of a gives the (large) theoretical uncertainty

• calculations are made and cross-checked using LxJet and OSCARS

Two scenarios:

1 central-forward jets

→ two leading jets are in the central region with
∣∣∣η1,2

∣∣∣ < 2.8
→ the softest jet is in the forward region 3.2 < η3 < 4.7
→ pT cut = 35 GeV
→ we may restrict additional cuts on the central jets, e.g.

∣∣∣~pT 1 + ~pT 2

∣∣∣ < Dcut

2 purely forward jets

→ all the jets are in the forward region 3.2 < η1,2,3 < 4.9
→ pT cut = 20 GeV
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Results: forward-central three jet production

• decorrelations (φ13 = |φ1 − φ3 |)
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• unbalanced pT of the jets
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Applications: forward three jet production

• decorrelations (φ13 = |φ1 − φ3 |)
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Summary and outline
• three jets at the LHC using off-shell gauge invariant tree-level matrix

elements and and gluon unintegrated densities relevant for larger pT

→ the forward-central setup with pT cut = 35 GeV does not discriminate
between different evolutions, although additional restrictions on the
central jets may do so

→ the purely forward jets with pT cut = 20 GeV are sensitive to saturation; in
particular there is a strong suppression of the nuclear modification ratio

• calculations were performed using new MC codes: LxJet1 (C++, ROOT,
FOAM) and OSCARS (fortran code similar to HELAC)

Future developments:

• final state parton shower (our programs – event generators)

• NLO jets within “hybrid” high energy factorization (possibility of use dipole
subtraction method for massive Aivazis-Collins-Olness-Tung factorization2)

• nonlinear extension of CCFM evolution equation3

• MPIs

1 http://annapurna.ifj.edu.pl/∼pkotko/LxJet.html
2 P. Kotko, W. Slominski, Phys.Rev. D86 (2012) 094008
3 K. Kutak JHEP 1212 (2012) 033, solution currently investigated by D. Toton

11



Backup



Small x and forward processes

Forward processes (relevant for small x) correspond to asymmetric configurations

xA =
∑

i

∣∣∣~pT i

∣∣∣
√

S
exp (ηi)

xB =
∑

i
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S
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xas = |xA − xB | / (xA + xB)

central-forward three jet production
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This accounts for a simplification:

• large fractions xB → collinear approach (with on-shell partons)

• small fractions xA → high energy factorization (with an off-shell gluon)
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Framework: off-shell amplitudes

Color ordered result for g∗g → g . . . g

Ã (ε1, . . . , εN) = −
∣∣∣∣~kT A

∣∣∣∣
kT A · J (ε1, . . . , εN)

+

(
−g
√

2

)N
ε1 · pA . . . εN · pA

k1 · pA (k1 − k2) · pA . . . (k1 − . . . − kN−1) · pA



where
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+
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j=i+1

Vναβγ4 Jα (ε1, . . . , εi) Jβ
(
εi+1, . . . , εj

)
Jγ

(
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)


where kij = ki + ki+1 + . . .+ kj , V3 and V4 are three and four-gluon vertices.

The red piece was obtained using the Slavnov-Taylor identities and correspond to
bremsstrahlung from the straight infinite Wilson line along pA (in axial gauge).

1 A. van Hameren, P. Kotko, K. Kutak, JHEP 1212 (2012) 029 14


