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SUSY at TeV scale: 

SUSY: 
 Provides Unification with gravity  
 Required for the String/Brane picture
 Maximal SUSY theories might be integrable -

         a way to nonperturbative solutions and
         quantum gravity 



HEP Scale

3

G. Tonelli, CERN/INFN/UNIPI                                              ITEP_MOSCOW                                               February 12-19 2013           
48


A light boson, could in principle rule its self-interaction and the Yukawa interactions 

with fermions in such a way that the theory could remain weakly coupled up to the 

Planck scale without any dynamics appearing beyond the EWK scale. 


This would be in itself an outstanding discovery: for the first time we would 
have seen a phenomenon that could be described by the same theory over 15 
orders of magnitude in energy. 


A 125GeV boson is a very special object 

SUSY
?
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What 
SUSY?

Sample superparticle spectrumn

Despite supersymmetric rigidity of dimensionless couplings the arbitrariness 
of soft terms make predictions strongly model dependent ! 
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Particle Content of the MSSM 

   

Superfield Bosons Fermions SUc (3) SU L(2) UY (1)
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(if SUSY DM)

   Search for long-lived SUSY particles

Nothing so far ...
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Example                                       of MSSMm0, m1/2, A0, tan�

Advandage:  small number of universal parameters for all masses
Disadvantage: strictly model dependent (MSSM, NMSSM, etc)

2. Low energy input: 
use low energy parameters like masses of superpartners
Example                              or m̃g, m̃q, m̃�

Advandage:  less model dependent
Disadvantage: many parameters, process dependent

Both approaches are used 

mA, tan�



10

The Progress of LHC



CMS$CMSSSM$summary$

 [GeV]0m
500 1000 1500 2000 2500 3000

 [G
eV

]
1/

2
m

100

200

300

400

500

600

700

800

± l~ LEP2 

± 
1
χ∼ LEP2 

No EWSB
Non-Convergent RGE's

 =
 L

SP
τ∼

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 1000
q~m(

) = 1500
q~m(

) = 2000

q~
m( ) = 2500

q ~
m

( )=10βtan(
 = 0 GeV0A

 > 0µ

 = 173.2 GeVtm

 = 7 TeVs, -1 = 4.98 fb
int

CMS Preliminary    L

Jets+MHT

Razor

SS Dilepton

OS Dilepton

Multi-Lepton

MT2

1 Lepton

39$

10

The Progress of LHC

 [GeV]0m
500 1000 1500 2000 2500 3000 3500

 [G
eV

]
1/

2
m

300

350

400

450

500

550

600

650

700

750

800

 (1000 G
eV)

q~

 (1400 G
eV)

q ~

 (1800 G
eV)

q ~

 (1000 GeV)g~

 (1200 GeV)g~

 (1400 GeV)g~

 (1600 GeV)g~

>0P= 0, 
0

 = 10, AEMSUGRA/CMSSM: tan

=8 TeVs,  -1 L dt = 5.8 fb³
0-lepton combined

ATLAS

)theory
SUSYV1 rObserved limit (

)expV1 rExpected limit (

, 7 TeV)-1Observed limit (4.7 fb

Non-convergent RGE

No EW-SB

Preliminary



CMS$CMSSSM$summary$

 [GeV]0m
500 1000 1500 2000 2500 3000

 [G
eV

]
1/

2
m

100

200

300

400

500

600

700

800

± l~ LEP2 

± 
1
χ∼ LEP2 

No EWSB
Non-Convergent RGE's

 =
 L

SP
τ∼

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 1000
q~m(

) = 1500
q~m(

) = 2000

q~
m( ) = 2500

q ~
m

( )=10βtan(
 = 0 GeV0A

 > 0µ

 = 173.2 GeVtm

 = 7 TeVs, -1 = 4.98 fb
int

CMS Preliminary    L

Jets+MHT

Razor

SS Dilepton

OS Dilepton

Multi-Lepton

MT2

1 Lepton

39$

ATLAS$0Nlepton$search$
2@6+jets+++ETmiss+
Meff+defines+signal+regions+

Look+for+squarks+and+gluinos+
with+direct+decays+to+SM+LSP+

Search+for+strong+produc'on+of+squarks+and+gluinos.++
Very+strong+limits+from+coun'ng+experiment.++
Dominant+background+from+Z�> νν.+
Limits+do+not+apply+to+stop/sboPom+produc'on. +++++++ 9$

ATLASNCONFN2012N033$

10

The Progress of LHC

 [GeV]0m
500 1000 1500 2000 2500 3000 3500

 [G
eV

]
1/

2
m

300

350

400

450

500

550

600

650

700

750

800

 (1000 G
eV)

q~

 (1400 G
eV)

q ~

 (1800 G
eV)

q ~

 (1000 GeV)g~

 (1200 GeV)g~

 (1400 GeV)g~

 (1600 GeV)g~

>0P= 0, 
0

 = 10, AEMSUGRA/CMSSM: tan

=8 TeVs,  -1 L dt = 5.8 fb³
0-lepton combined

ATLAS

)theory
SUSYV1 rObserved limit (

)expV1 rExpected limit (

, 7 TeV)-1Observed limit (4.7 fb

Non-convergent RGE

No EW-SB

Preliminary

 [GeV]g~m
500 600 700 800 900 1000 1100 1200

 [G
eV

]
10 χ∼

m

100

200

300

400

500

600

 fo
rb

idd
en

1
0

χ∼t t
→g~

 not included.theory
SUSYσ 95% C.L. limits. SCL

1
0χ∼t t→g~ production, g~-g~

 PreliminaryATLAS

Expected
Observed
Expected
Observed
Expected
Observed

 6-9 jets≥0-lepton, 

 4 jets≥2-SS-leptons, 

3 b-jets

ATLAS-CONF-2012-103

ATLAS-CONF-2012-105

arXiv:1207.4686

, 8 TeV]-1 = 5.8 fb
int

[L

, 8 TeV]-1 = 5.8 fb
int

[L

, 7 TeV]-1 = 4.7 fb
int

[L

gluino mass [GeV]
400 500 600 700 800 900 1000 1100 1200

LS
P 

m
as

s 
[G

eV
]

200

400

600

800

1000

1200

(m)=200 GeV

δ

Tα
 [T1bbbb]Tα

THjets + 
T2M

+b [T1bbbb]T2M
+b [T1bbbb]TE

razor
razor+b [T1bbbb]

CMS preliminary

)g~m(>)>q~; m(0χ∼ q q → g~95% exclusion limits for 

-17 TeV, 4.98 fb



CMS$CMSSSM$summary$

 [GeV]0m
500 1000 1500 2000 2500 3000

 [G
eV

]
1/

2
m

100

200

300

400

500

600

700

800

± l~ LEP2 

± 
1
χ∼ LEP2 

No EWSB
Non-Convergent RGE's

 =
 L

SP
τ∼

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 1000
q~m(

) = 1500
q~m(

) = 2000

q~
m( ) = 2500

q ~
m

( )=10βtan(
 = 0 GeV0A

 > 0µ

 = 173.2 GeVtm

 = 7 TeVs, -1 = 4.98 fb
int

CMS Preliminary    L

Jets+MHT

Razor

SS Dilepton

OS Dilepton

Multi-Lepton

MT2

1 Lepton

39$

ATLAS$0Nlepton$search$
2@6+jets+++ETmiss+
Meff+defines+signal+regions+

Look+for+squarks+and+gluinos+
with+direct+decays+to+SM+LSP+

Search+for+strong+produc'on+of+squarks+and+gluinos.++
Very+strong+limits+from+coun'ng+experiment.++
Dominant+background+from+Z�> νν.+
Limits+do+not+apply+to+stop/sboPom+produc'on. +++++++ 9$

ATLASNCONFN2012N033$

m̃g > 1000 GeV
10

The Progress of LHC

 [GeV]0m
500 1000 1500 2000 2500 3000 3500

 [G
eV

]
1/

2
m

300

350

400

450

500

550

600

650

700

750

800

 (1000 G
eV)

q~

 (1400 G
eV)

q ~

 (1800 G
eV)

q ~

 (1000 GeV)g~

 (1200 GeV)g~

 (1400 GeV)g~

 (1600 GeV)g~

>0P= 0, 
0

 = 10, AEMSUGRA/CMSSM: tan

=8 TeVs,  -1 L dt = 5.8 fb³
0-lepton combined

ATLAS

)theory
SUSYV1 rObserved limit (

)expV1 rExpected limit (

, 7 TeV)-1Observed limit (4.7 fb

Non-convergent RGE

No EW-SB

Preliminary

 [GeV]g~m
500 600 700 800 900 1000 1100 1200

 [G
eV

]
10 χ∼

m

100

200

300

400

500

600

 fo
rb

idd
en

1
0

χ∼t t
→g~

 not included.theory
SUSYσ 95% C.L. limits. SCL

1
0χ∼t t→g~ production, g~-g~

 PreliminaryATLAS

Expected
Observed
Expected
Observed
Expected
Observed

 6-9 jets≥0-lepton, 

 4 jets≥2-SS-leptons, 

3 b-jets

ATLAS-CONF-2012-103

ATLAS-CONF-2012-105

arXiv:1207.4686

, 8 TeV]-1 = 5.8 fb
int

[L

, 8 TeV]-1 = 5.8 fb
int

[L

, 7 TeV]-1 = 4.7 fb
int

[L

gluino mass [GeV]
400 500 600 700 800 900 1000 1100 1200

LS
P 

m
as

s 
[G

eV
]

200

400

600

800

1000

1200

(m)=200 GeV

δ

Tα
 [T1bbbb]Tα

THjets + 
T2M

+b [T1bbbb]T2M
+b [T1bbbb]TE

razor
razor+b [T1bbbb]

CMS preliminary

)g~m(>)>q~; m(0χ∼ q q → g~95% exclusion limits for 

-17 TeV, 4.98 fb



CMS$CMSSSM$summary$

 [GeV]0m
500 1000 1500 2000 2500 3000

 [G
eV

]
1/

2
m

100

200

300

400

500

600

700

800

± l~ LEP2 

± 
1
χ∼ LEP2 

No EWSB
Non-Convergent RGE's

 =
 L

SP
τ∼

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 1000
q~m(

) = 1500
q~m(

) = 2000

q~
m( ) = 2500

q ~
m

( )=10βtan(
 = 0 GeV0A

 > 0µ

 = 173.2 GeVtm

 = 7 TeVs, -1 = 4.98 fb
int

CMS Preliminary    L

Jets+MHT

Razor

SS Dilepton

OS Dilepton

Multi-Lepton

MT2

1 Lepton

39$

ATLAS$0Nlepton$search$
2@6+jets+++ETmiss+
Meff+defines+signal+regions+

Look+for+squarks+and+gluinos+
with+direct+decays+to+SM+LSP+

Search+for+strong+produc'on+of+squarks+and+gluinos.++
Very+strong+limits+from+coun'ng+experiment.++
Dominant+background+from+Z�> νν.+
Limits+do+not+apply+to+stop/sboPom+produc'on. +++++++ 9$

ATLASNCONFN2012N033$

m̃q > 1400 GeVm̃g > 1000 GeV
10

The Progress of LHC

 [GeV]0m
500 1000 1500 2000 2500 3000 3500

 [G
eV

]
1/

2
m

300

350

400

450

500

550

600

650

700

750

800

 (1000 G
eV)

q~

 (1400 G
eV)

q ~

 (1800 G
eV)

q ~

 (1000 GeV)g~

 (1200 GeV)g~

 (1400 GeV)g~

 (1600 GeV)g~

>0P= 0, 
0

 = 10, AEMSUGRA/CMSSM: tan

=8 TeVs,  -1 L dt = 5.8 fb³
0-lepton combined

ATLAS

)theory
SUSYV1 rObserved limit (

)expV1 rExpected limit (

, 7 TeV)-1Observed limit (4.7 fb

Non-convergent RGE

No EW-SB

Preliminary

 [GeV]g~m
500 600 700 800 900 1000 1100 1200

 [G
eV

]
10 χ∼

m

100

200

300

400

500

600

 fo
rb

idd
en

1
0

χ∼t t
→g~

 not included.theory
SUSYσ 95% C.L. limits. SCL

1
0χ∼t t→g~ production, g~-g~

 PreliminaryATLAS

Expected
Observed
Expected
Observed
Expected
Observed

 6-9 jets≥0-lepton, 

 4 jets≥2-SS-leptons, 

3 b-jets

ATLAS-CONF-2012-103

ATLAS-CONF-2012-105

arXiv:1207.4686

, 8 TeV]-1 = 5.8 fb
int

[L

, 8 TeV]-1 = 5.8 fb
int

[L

, 7 TeV]-1 = 4.7 fb
int

[L

gluino mass [GeV]
400 500 600 700 800 900 1000 1100 1200

LS
P 

m
as

s 
[G

eV
]

200

400

600

800

1000

1200

(m)=200 GeV

δ

Tα
 [T1bbbb]Tα

THjets + 
T2M

+b [T1bbbb]T2M
+b [T1bbbb]TE

razor
razor+b [T1bbbb]

CMS preliminary

)g~m(>)>q~; m(0χ∼ q q → g~95% exclusion limits for 

-17 TeV, 4.98 fb



11

G. Tonelli, CERN/INFN/UNIPI                                             ITEP_MOSCOW                                                 February 12-19 2013           
35


SUSY in simplified models 
Hadronic (left) and leptonic (right) SUSY searches in simplified SUSY models. 

Exclusion limits for gluino and squark masses, for mχ0 = 0 GeV (dark blue) and 


mmother − mχ0= 200 GeV (light blue). 


CMS-PAS-SUS-11-016


SUSY is not dead (yet). It might still hide in low MET/low HT events. More complicated 

models are under investigation more challenging searches. For some it is hard to 

even get the data on tape. 
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CMS stop and sbottom searches 

CMS-SUS-11-024


Di-stop production resulting in 2 


top quarks +MET final states


Di-sbottom production resulting in 2 


b quarks +MET final states


Stop and Sbottom Searches at LHC 



LHC Reach at 7 and 14 TeV
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LHC Reach at 7 and 14 TeV

Energy is more important than luminosity
13
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Indirect Search at LHC

Bs,d ! µ+µ�

Bs ! Xs�

Bu ! ⌧⌫

g � 2
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LHCb: measurement of the BR Bs µ+µ-  

 arXiv 1203.4493 

•LHCb measurement
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Indirect: MSSM v NMSSM

Bs ! s�, Bs ! µ+µ�, Bs ! ⌧⌫

95% CL exclusion
W.de Boer, C.Beskidt, D.K.‘11’12

NMSSM calculations made with NMSSMTools

MSSM

U.Ellwanger et al

Br[Bs ! Xs�] = (3.55± 0.24) · 10�4

Br[Bu ! ⌧⌫] = (1.68± 0.31) · 10�4

Br[Bs ! µ+µ�] = 3.2 · 10�9

MicrOMEGAs 2.4.1
G. Bélanger et al
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 126 GeV Higgs mass for
m

˜t1 in the range of 500–800 GeV, while the two lower lines are for zero top squark mixing and
do not yield a 126 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken tan � = 20. The
shaded regions highlight the di↵erence between the Suspect and FeynHiggs results, and may be
taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 32 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

126 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1 – 2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 126 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but is still of concern.

2

Very heavy stops (beyond LHC reach) 
or large susy-breaking trilinear terms

 ➥The MSSM is becoming unnatural 
(>99% parameter space excluded)

from JHEP 1204 (2012) 131 from arXiv:1207.1348

Figure 5: Maximal Higgs mass (in GeV) in CMSSM in function of the scale MS = p
m

˜t1
m

˜t2
(in

GeV) for di↵erent top mass values.

Figure 6: Parameter space for the various regimes of the MSSM Higgs sector as defined in the
text and in eq. (8) in the tan�–MA plane, in the maximal mixing scenario with MS = 2 TeV. The
constraints from A ! ⌧⌧ (continuous green line) and t ! H+b (dashed green line) searches at the
LHC are shown together with the LEP2 constraint (continuous black line).

4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total
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4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total
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Figure 5: Maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB,
an a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV.

have been adopted). The outcome is shown in Fig. 6 where the maximal h mass value obtained
by scanning the basic input parameters of the model over the appropriate ranges. In the left–
hand side, Mmax

h is displayed as a function of tan� and in the right–hand side as a function
of MS. As the lower bound Mmax

h � 123 GeV is the same as in our previous analysis, the
mASMB, mGMSB and some variants of the mSUGRA model such as the constrained NMSSM
(cNMSSM), the no-scale model and the very constrained MSSM (VCMSSM) scenarios are still
disfavoured. However, for mSUGRA and the non–universal Higgs mass model (NUHM), all
values of tan � >⇠ 3 and 1 TeV <⇠ MS <⇠ 3 TeV lead to an appropriate value of Mh when
including the uncertainty band.

Figure 6: The maximal hmass value Mmax

h as functions of tan� (left) andMS (right) in the mASMB,
mGMSB as well as in mSUGRA and some of its variants. The basic parameters of the models are
varied within the ranges given in Ref. [4]; the top quark mass is fixed to mt = 173 GeV.
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˜t1 in the range of 500–800 GeV, while the two lower lines are for zero top squark mixing and
do not yield a 126 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken tan � = 20. The
shaded regions highlight the di↵erence between the Suspect and FeynHiggs results, and may be
taken as an estimate of the uncertainties in the two-loop calculation.
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4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total
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Figure 4: Left: Total production cross section of strongly interacting particles (colour coding) in
comparison with the LHC excluded limits for 7 TeV. Here the data from ATLAS and
CMS were combined. The ATLAS and CMS data correspond to an integrated luminosity
of 4.4 and 4.71 fb�1, respectively. One observes from the colour coding that a cross section
of 0.003 to 0.03 pb is excluded at 95% confidence level. Right: Values of mA in the
(m0,m1/2)-plane after optimizing tan� and A0 to fulfill all constraints at every point.
The data below the solid line in the right panel is excluded at 95% confidence level from
the mA exclusion contour as function of tan�.

Figure 5: If a Higgs mass of 125 GeV is imposed in the fit, the best-fit point moves to higher SUSY
masses, but the location is strongly dependent on the assumed error for the calculated
Higgs mass. This error is indicated by the number inside the circle for the best-fit point.
Left ��

2 = 2.3(1�) contour; right ��

2 = 5.99(2�) contour.

3.4 E↵ect of a SM Higgs mass mh around 125 GeV

The 95% C.L. LEP limit of 114.4 GeV contributes for small and intermediate SUSY masses to the �

2

function, as shown by contour 3 in Fig. 1. In the fit we use the 95% C.L. LEP limit of 114.4 GeV
on the Higgs mass instead of the limits published by CMS and ATLAS with about 5/fb. In these
publications CMS [41] and ATLAS [42] show some evidence for a Higgs with a mass around 125 GeV.
If we assume this to be evidence for a SM Higgs boson, which has similar properties as the lightest
SUSY Higgs boson in the decoupling regime, we can check the consequences in the CMSSM we are
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an a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV.
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hand side, Mmax

h is displayed as a function of tan� and in the right–hand side as a function
of MS. As the lower bound Mmax

h � 123 GeV is the same as in our previous analysis, the
mASMB, mGMSB and some variants of the mSUGRA model such as the constrained NMSSM
(cNMSSM), the no-scale model and the very constrained MSSM (VCMSSM) scenarios are still
disfavoured. However, for mSUGRA and the non–universal Higgs mass model (NUHM), all
values of tan � >⇠ 3 and 1 TeV <⇠ MS <⇠ 3 TeV lead to an appropriate value of Mh when
including the uncertainty band.

Figure 6: The maximal hmass value Mmax

h as functions of tan� (left) andMS (right) in the mASMB,
mGMSB as well as in mSUGRA and some of its variants. The basic parameters of the models are
varied within the ranges given in Ref. [4]; the top quark mass is fixed to mt = 173 GeV.
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 126 GeV Higgs mass for
m

˜t1 in the range of 500–800 GeV, while the two lower lines are for zero top squark mixing and
do not yield a 126 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken tan � = 20. The
shaded regions highlight the di↵erence between the Suspect and FeynHiggs results, and may be
taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 32 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

126 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1 – 2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 126 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but is still of concern.
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or large susy-breaking trilinear terms
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Figure 5: Maximal Higgs mass (in GeV) in CMSSM in function of the scale MS = p
m

˜t1
m

˜t2
(in

GeV) for di↵erent top mass values.

Figure 6: Parameter space for the various regimes of the MSSM Higgs sector as defined in the
text and in eq. (8) in the tan�–MA plane, in the maximal mixing scenario with MS = 2 TeV. The
constraints from A ! ⌧⌧ (continuous green line) and t ! H+b (dashed green line) searches at the
LHC are shown together with the LEP2 constraint (continuous black line).

4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total

14

Figure 4: Left: Total production cross section of strongly interacting particles (colour coding) in
comparison with the LHC excluded limits for 7 TeV. Here the data from ATLAS and
CMS were combined. The ATLAS and CMS data correspond to an integrated luminosity
of 4.4 and 4.71 fb�1, respectively. One observes from the colour coding that a cross section
of 0.003 to 0.03 pb is excluded at 95% confidence level. Right: Values of mA in the
(m0,m1/2)-plane after optimizing tan� and A0 to fulfill all constraints at every point.
The data below the solid line in the right panel is excluded at 95% confidence level from
the mA exclusion contour as function of tan�.

Figure 5: If a Higgs mass of 125 GeV is imposed in the fit, the best-fit point moves to higher SUSY
masses, but the location is strongly dependent on the assumed error for the calculated
Higgs mass. This error is indicated by the number inside the circle for the best-fit point.
Left ��

2 = 2.3(1�) contour; right ��

2 = 5.99(2�) contour.

3.4 E↵ect of a SM Higgs mass mh around 125 GeV

The 95% C.L. LEP limit of 114.4 GeV contributes for small and intermediate SUSY masses to the �

2

function, as shown by contour 3 in Fig. 1. In the fit we use the 95% C.L. LEP limit of 114.4 GeV
on the Higgs mass instead of the limits published by CMS and ATLAS with about 5/fb. In these
publications CMS [41] and ATLAS [42] show some evidence for a Higgs with a mass around 125 GeV.
If we assume this to be evidence for a SM Higgs boson, which has similar properties as the lightest
SUSY Higgs boson in the decoupling regime, we can check the consequences in the CMSSM we are

6

Figure 5: Maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB,
an a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV.

have been adopted). The outcome is shown in Fig. 6 where the maximal h mass value obtained
by scanning the basic input parameters of the model over the appropriate ranges. In the left–
hand side, Mmax

h is displayed as a function of tan� and in the right–hand side as a function
of MS. As the lower bound Mmax

h � 123 GeV is the same as in our previous analysis, the
mASMB, mGMSB and some variants of the mSUGRA model such as the constrained NMSSM
(cNMSSM), the no-scale model and the very constrained MSSM (VCMSSM) scenarios are still
disfavoured. However, for mSUGRA and the non–universal Higgs mass model (NUHM), all
values of tan � >⇠ 3 and 1 TeV <⇠ MS <⇠ 3 TeV lead to an appropriate value of Mh when
including the uncertainty band.

Figure 6: The maximal hmass value Mmax

h as functions of tan� (left) andMS (right) in the mASMB,
mGMSB as well as in mSUGRA and some of its variants. The basic parameters of the models are
varied within the ranges given in Ref. [4]; the top quark mass is fixed to mt = 173 GeV.
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Constraint Data Ref.

⌦h2 0.113± 0.004 [8]
b ! Xs� (3.55± 0.24) · 10�4 [27]
Bu ! ⌧⌫ (1.68± 0.31) · 10�4 [27]
�aµ (302 ± 63(exp) ± 61(theo)) · 10�11 [28]
B

0
s ! µ

+
µ

�
B

0
s ! µ

+
µ

�
< 4.5 · 10�9 [29]

mh mh > 114.4 GeV [30]
mA mA > 480 GeV for tan� ⇡ 50 [31, 32]
ATLAS �

SUSY
had < 0.003� 0.03 pb [33]

CMS �

SUSY
had < 0.005� 0.03 pb [34]

XENON100 ��N < 8 · 10�45 � 2 · 10�44
cm

2 [35]

Table 1: List of all constraints used in the fit to determine the excluded region of the CMSSM
parameter space.

contradictory [7]. Combining all data from the LHC, cosmology and direct DM searches leads to
strong constraints on the masses of the predicted SUSY masses, as discussed in many recent papers
[9–20].

To restrict the number of independent SUSY masses one usually assumes the masses to be unified at
the GUT scale and the particles get di↵erent masses at lower energies because of radiative corrections.
This works well for the SM model particles of the third generation, if they are in the same multiplet
and get mass from the same Higgs field. E.g. the ratio of b/⌧ masses is well predicted by radiative
corrections, if one assumes the Yukawa couplings are unified at the GUT scale. For the mass breaking
terms of the SUSY particles one assumes that the masses of spin 0 (spin 1/2) particles are unified
at the GUT scale with values m0(m1/2). In the constrained Minimal Supersymmetric SM (CMSSM)
[21, 22] the many parameters of SUSY models are reduced to only four: the two mass parameters
m0, m1/2 and two parameters related to the Higgs sector: the trilinear coupling at the GUT scale
A0, and tan�, the ratio of the vacuum expectation values of the two neutral components of the two
Higgs doublets. Electroweak symmetry breaking (EWSB) fixes the scale of µ, so only its sign is a free
parameter. The positive sign is taken, as suggested by the small deviation of the SM prediction from
the muon anomalous moment, see e.g. [23].

In this letter we combine the data from LHC, WMAP, XENON100, flavour physics and g-2.
The specific observables are detailed in Table 1. We start by discussing the fitting technique, the
observations and the excluded regions of each observation separately.

2 Multistep Fitting Technique

Excluded regions have been determined by many di↵erent groups either using a frequentist approach
by maximizing a likelihood or using random sampling techniques of the parameter space, see e.g.
[9–20] and references therein. Bayesian techniques, as typically used with Markov Chain or Multinest
sampling techniques, are dependent on the prior, which leads to an additional, non-quantifiable uncer-
tainty in the excluded or allowed regions, see e.g. [24] for a recent discussion and references therein.
We believe this uncertainty is due to the high correlations between three of the four parameters, as
we discussed in two previous papers [25, 26]. Such strong correlations lead to likelihood spikes in the
parameter region, where three of the four parameters have to have specific correlated values. Although
the likelihood of such narrow regions is high, they can be easily missed in methods based on stepping
techniques.

To cope with the strong correlations we use a multistep fitting technique, defined by fitting the

1
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Table 1: List of all constraints used in the fit to determine the excluded region of the CMSSM
parameter space.

contradictory [7]. Combining all data from the LHC, cosmology and direct DM searches leads to
strong constraints on the masses of the predicted SUSY masses, as discussed in many recent papers
[9–20].

To restrict the number of independent SUSY masses one usually assumes the masses to be unified at
the GUT scale and the particles get di↵erent masses at lower energies because of radiative corrections.
This works well for the SM model particles of the third generation, if they are in the same multiplet
and get mass from the same Higgs field. E.g. the ratio of b/⌧ masses is well predicted by radiative
corrections, if one assumes the Yukawa couplings are unified at the GUT scale. For the mass breaking
terms of the SUSY particles one assumes that the masses of spin 0 (spin 1/2) particles are unified
at the GUT scale with values m0(m1/2). In the constrained Minimal Supersymmetric SM (CMSSM)
[21, 22] the many parameters of SUSY models are reduced to only four: the two mass parameters
m0, m1/2 and two parameters related to the Higgs sector: the trilinear coupling at the GUT scale
A0, and tan�, the ratio of the vacuum expectation values of the two neutral components of the two
Higgs doublets. Electroweak symmetry breaking (EWSB) fixes the scale of µ, so only its sign is a free
parameter. The positive sign is taken, as suggested by the small deviation of the SM prediction from
the muon anomalous moment, see e.g. [23].

In this letter we combine the data from LHC, WMAP, XENON100, flavour physics and g-2.
The specific observables are detailed in Table 1. We start by discussing the fitting technique, the
observations and the excluded regions of each observation separately.

2 Multistep Fitting Technique

Excluded regions have been determined by many di↵erent groups either using a frequentist approach
by maximizing a likelihood or using random sampling techniques of the parameter space, see e.g.
[9–20] and references therein. Bayesian techniques, as typically used with Markov Chain or Multinest
sampling techniques, are dependent on the prior, which leads to an additional, non-quantifiable uncer-
tainty in the excluded or allowed regions, see e.g. [24] for a recent discussion and references therein.
We believe this uncertainty is due to the high correlations between three of the four parameters, as
we discussed in two previous papers [25, 26]. Such strong correlations lead to likelihood spikes in the
parameter region, where three of the four parameters have to have specific correlated values. Although
the likelihood of such narrow regions is high, they can be easily missed in methods based on stepping
techniques.

To cope with the strong correlations we use a multistep fitting technique, defined by fitting the
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Table 1: List of all constraints used in the fit to determine the excluded region of the CMSSM
parameter space.

contradictory [7]. Combining all data from the LHC, cosmology and direct DM searches leads to
strong constraints on the masses of the predicted SUSY masses, as discussed in many recent papers
[9–20].

To restrict the number of independent SUSY masses one usually assumes the masses to be unified at
the GUT scale and the particles get di↵erent masses at lower energies because of radiative corrections.
This works well for the SM model particles of the third generation, if they are in the same multiplet
and get mass from the same Higgs field. E.g. the ratio of b/⌧ masses is well predicted by radiative
corrections, if one assumes the Yukawa couplings are unified at the GUT scale. For the mass breaking
terms of the SUSY particles one assumes that the masses of spin 0 (spin 1/2) particles are unified
at the GUT scale with values m0(m1/2). In the constrained Minimal Supersymmetric SM (CMSSM)
[21, 22] the many parameters of SUSY models are reduced to only four: the two mass parameters
m0, m1/2 and two parameters related to the Higgs sector: the trilinear coupling at the GUT scale
A0, and tan�, the ratio of the vacuum expectation values of the two neutral components of the two
Higgs doublets. Electroweak symmetry breaking (EWSB) fixes the scale of µ, so only its sign is a free
parameter. The positive sign is taken, as suggested by the small deviation of the SM prediction from
the muon anomalous moment, see e.g. [23].

In this letter we combine the data from LHC, WMAP, XENON100, flavour physics and g-2.
The specific observables are detailed in Table 1. We start by discussing the fitting technique, the
observations and the excluded regions of each observation separately.

2 Multistep Fitting Technique

Excluded regions have been determined by many di↵erent groups either using a frequentist approach
by maximizing a likelihood or using random sampling techniques of the parameter space, see e.g.
[9–20] and references therein. Bayesian techniques, as typically used with Markov Chain or Multinest
sampling techniques, are dependent on the prior, which leads to an additional, non-quantifiable uncer-
tainty in the excluded or allowed regions, see e.g. [24] for a recent discussion and references therein.
We believe this uncertainty is due to the high correlations between three of the four parameters, as
we discussed in two previous papers [25, 26]. Such strong correlations lead to likelihood spikes in the
parameter region, where three of the four parameters have to have specific correlated values. Although
the likelihood of such narrow regions is high, they can be easily missed in methods based on stepping
techniques.

To cope with the strong correlations we use a multistep fitting technique, defined by fitting the
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Table 1: List of all constraints used in the fit to determine the excluded region of the CMSSM
parameter space.

contradictory [7]. Combining all data from the LHC, cosmology and direct DM searches leads to
strong constraints on the masses of the predicted SUSY masses, as discussed in many recent papers
[9–20].

To restrict the number of independent SUSY masses one usually assumes the masses to be unified at
the GUT scale and the particles get di↵erent masses at lower energies because of radiative corrections.
This works well for the SM model particles of the third generation, if they are in the same multiplet
and get mass from the same Higgs field. E.g. the ratio of b/⌧ masses is well predicted by radiative
corrections, if one assumes the Yukawa couplings are unified at the GUT scale. For the mass breaking
terms of the SUSY particles one assumes that the masses of spin 0 (spin 1/2) particles are unified
at the GUT scale with values m0(m1/2). In the constrained Minimal Supersymmetric SM (CMSSM)
[21, 22] the many parameters of SUSY models are reduced to only four: the two mass parameters
m0, m1/2 and two parameters related to the Higgs sector: the trilinear coupling at the GUT scale
A0, and tan�, the ratio of the vacuum expectation values of the two neutral components of the two
Higgs doublets. Electroweak symmetry breaking (EWSB) fixes the scale of µ, so only its sign is a free
parameter. The positive sign is taken, as suggested by the small deviation of the SM prediction from
the muon anomalous moment, see e.g. [23].

In this letter we combine the data from LHC, WMAP, XENON100, flavour physics and g-2.
The specific observables are detailed in Table 1. We start by discussing the fitting technique, the
observations and the excluded regions of each observation separately.

2 Multistep Fitting Technique

Excluded regions have been determined by many di↵erent groups either using a frequentist approach
by maximizing a likelihood or using random sampling techniques of the parameter space, see e.g.
[9–20] and references therein. Bayesian techniques, as typically used with Markov Chain or Multinest
sampling techniques, are dependent on the prior, which leads to an additional, non-quantifiable uncer-
tainty in the excluded or allowed regions, see e.g. [24] for a recent discussion and references therein.
We believe this uncertainty is due to the high correlations between three of the four parameters, as
we discussed in two previous papers [25, 26]. Such strong correlations lead to likelihood spikes in the
parameter region, where three of the four parameters have to have specific correlated values. Although
the likelihood of such narrow regions is high, they can be easily missed in methods based on stepping
techniques.

To cope with the strong correlations we use a multistep fitting technique, defined by fitting the
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MSSM
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Is$SUSY$Dead?$

•  Under$aLack$from$all$sides,$but$not$dead$yet.$
•  The$searches$leave$liLle$room$for$SUSY$inside$the$
reach$of$the$exisHng$data.$

•  But$interpretaHons$within$SUSY$models$rely$on$
many$simplifying$assumpHons,$and$so$care$must$
be$taken$when$making$use$of$the$limit$plots$

•  Plausible$“natural”$scenarios$sHll$not$ruled$out:$
stop$and/or$RPV$scenarios$have$few$constraints.$

•  There$is$no$reason$to$give$up$hope$of$finding$
SUSY$at$the$LHC.$

31$

Is SUSY dead?

23

A.Parker
ICHEP’12



24

Concluding Remarks



24

Concluding Remarks

  SUSY today: 



24

Concluding Remarks

  SUSY today: 

• No signal so far, but do not give up



24

Concluding Remarks

  SUSY today: 

• No signal so far, but do not give up
• There is still plenty of room for SUSY



24

Concluding Remarks

  SUSY today: 

• No signal so far, but do not give up
• There is still plenty of room for SUSY
• Interpretations of searches are model dependent



24

Concluding Remarks

  SUSY today: 

• No signal so far, but do not give up
• There is still plenty of room for SUSY
• Interpretations of searches are model dependent
• LHC run at 14 TeV might be crucial for low energy SUSY 



24

Concluding Remarks

  SUSY today: 

• No signal so far, but do not give up
• There is still plenty of room for SUSY
• Interpretations of searches are model dependent
• LHC run at 14 TeV might be crucial for low energy SUSY 

• Give me something better and I will stick to it


