QCD results from CMS

International Moscow Workshop on the Phenomenology of Strong Interactions In Tribute to Alexey Kaidalov

Vladimir Gavrilov (ITEP)
On behalf of the CMS Collaboration

Content

- Introduction
- CMS experiment and data taking in pp collisions
- Jet reconstruction and calibration
- Inclusive jet x-sections and PDF
- Di-jets at high mass region
- 3/2 jet ratio, 3-jet mass and α_s
- Color coherence
- Di-jets with large rapidity separations
- Conclusions

QCD at high energy pp collisions

pQCD allows to calculate x-sections of hard processes with high Pt jets

Corrections for non-perturbative effects like MPI, hadronisation and underlying event are small

Di-jet production at high mass region allows to search for phenomena beyond SM

CMS detector

pp data taking

CMS Integrated Luminosity, pp

Jet reconstruction

- Jets at CMS are reconstructed using anti-kt clustering algorithm (d=0.5 and d=0.7)
- Information from Calorimeters, Tracker and Muon system is used for jet reconstruction
- Jet energy calibration is based on Pt balance for di-jet, photon-jet and Z-jet events
- Correction of jet Pt spectra for jet energy smearing is performed using unfolding technique

Jet performance

JINST, 6(2011)P11002

Comparison with QCD calculations

- QCD NLO calculations of inclusive jet xsections are performed for different PDFs
- Corrections for non-perturbative effects (hadronisation, multi-parton interactions and underlying event) are calculated using MC generators
- The results are compared with data corrected to particle level jets

Inclusive jets at 7TeV

CMS PAS SMP 13-002 PR D87(2013)112002

Ratio ak5/ak7

CMS PAS SMP 13-002

Inclusive jets at 8 TeV

Results for 7 and 8 TeV will be used for PDF tuning

CMS PAS SMP 12-012

Di-jet mass distribution

Good agreement between data and QCD for high mass di-jet distribution

No heavy objects beyond SM decaying into two jets were observed up to ~5TeV

R32 and alpha s

$$\alpha_S(M_Z) = 0.1148 \pm 0.0014 \text{ (exp.)} \pm 0.0018 \text{ (PDF)}_{-0.0000}^{+0.0050} \text{ (scale)}$$

3-jet mass analysis

CMS-PAS_SMP-12-027

Color coherence

Selection criteria
$p_{\text{T1}} > p_{\text{T2}} > p_{\text{T3}} > 30 \text{GeV}$
$ \eta_1 , \eta_2 < 2.5$
$M_{12} > 220 \mathrm{GeV}$
$0.5 < \sqrt{(\Delta \eta_{23})^2 + (\Delta \phi_{23})^2} < 1.5$

$$\beta = |\operatorname{atan2}(\Delta \phi_{23}, \Delta \eta_{23})|$$

CMS PAS SMP-12-010

K-factor

Mueller-Nevelet*) jet pair: the most forward and the most backward jets in the event

$$R^{MN} = (d\sigma^{MN}/dy)/(d\sigma^{excl}/dy)$$

Where σ^{excl} is the x-section of the process with production of only two jets (above the threshold)

*) NP B 282(1987)727

EPJ C72(2012)2216

azimuthal de-correlation

azimuthal de-correlation (2)

$$\frac{1}{\sigma}\frac{d\sigma}{d(\Delta\phi)}(\Delta y, p_{\text{Tmin}}) = \frac{1}{2\pi}\left[1 + 2\sum_{n=1}^{\infty} C_n(\Delta y, p_{\text{Tmin}}) \cdot cos(n(\pi - \Delta\phi))\right]$$

Herwig++ looks to do a better job than Pythia

Cos ratios

CMS PAS FSQ-12-002

BFKL NLL: B.Dicloue, L. Szymanowski, and S. Wallon, arXiv:hep-ph/1302.7012

Cos ratios

Cos ratios

Summary

- Production of hadron jets at high energy pp collisions was studied at CMS
- Results on inclusive jet x-section will allow to constrain proton PDF
- 2jet/3jet ratio and 3-jet mass distribution allow to measure α_s at highest Q²
- Color coherence was studied for 3jet processes
- Di-jet azimuthal de-correlation was measured in wide rapidity range