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Cosmic ray studies with extensive air shower techniques

@ primary CR energy <= integrated light

@ CR composition <= shower maximum position X.x




Cosmic ray studies with extensive air shower techniques

e inel diffr
o e.g. predictions for Xmx depend on 6, 0"

@ predictions for muon density — on the multiplicity N;}iair
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@ in the dense limit (high energy & small b):
Pomeron-Pomeron interactions important
[Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

@ e.g. simpliest graphs:

@ (b) © (d) ©

o describe elastic re-scattering of intermediate partons off the
projectile/target hadrons & off each other

0] ©

@ why all-order resummation?
s higher order (wrt Gsp) contributions rise quicker with energy

@ have altering signs




Enhanced Pomeron diagrams

@ in the dense limit (high energy & small b):
Pomeron-Pomeron interactions important
[Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

@ e.g. simpliest graphs:

@ (b) © () © ] ()

Diagrammatic resummation [SO, 2006, 2008, 2010]

@ define some elementary 'building blocks'

@ construct arbitrary enhanced graphs out of them
@ correct for double (triple, etc.) counting

@ similarly for cut diagrams (based on AGK-rules)
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Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

In turn, contain Pomeron 'loop’ sequences (examples)

1069979
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Enhanced Pomeron diagrams

@ the above-discussed diagrammatic resummation is generic

@ but: particular assumptions on the Pomeron amplitude &
multi-Pomeron vertices needed

¢ to check the importance of the neglected graphs

o to check s-channel unitarity of the approach

@ choose the vertex for mP — nP: G = Gsp Y$+n_3

@ = 'renormalized’ soft Pomeron in the dense limit
[Kaidalov et al., 1986]: afs" = ap — G3p/Yp

ren

@ NB: applies for o™ > 1 only
(for Gap/yp > op — 1, Gior(s) — const for s — oo)

® = positive-definite cross sections for various final states

@ neglected contributions — negiligible (smaller than 1/mille)



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
0 ) i /
e 'soft’ Pomeron: smaller Otpsofr, larger Ot g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o ' . /
@ 'hard’ Pomeron: larger Olphaa, smaller otpy 4



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4

@ choose Olpsoft — 1< G3LP’/YLP’ < OlPhard — 1
o 'soft’ Pomeron becomes undercritical in the dense limit:
Upgor < 1
s 'soft’ Pomeron dominates at large b (larger slope)

@ 'hard" Pomeron dominates at small b (o), > 1)



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4

@ choose Opgoi — 1 < G3]P’/'Y]P’ < Ophard — 1
e 'soft’ Pomeron becomes undercritical in the dense limit:
Upgor < 1
s 'soft’ Pomeron dominates at large b (larger slope)

@ 'hard" Pomeron dominates at small b (o), > 1)



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4

@ choose Opgoi — 1 < G3]P’/'Y]P’ < Ophard — 1
o 'soft’ Pomeron becomes undercritical in the dense limit:
Upgor < 1
s 'soft’ Pomeron dominates at large b (larger slope)

@ 'hard" Pomeron dominates at small b (o), > 1)



Particular toy model [SO, 2010]

@ interesting case — model with 2 Pomerons:
1 1 . /
o 'soft’ Pomeron: smaller opgo, larger opg g

o f . /
@ 'hard’ Pomeron: larger Olphaa, smaller otp; 4

@ choose Opgoi — 1 < G3]P’/'Y]P’ < Ophard — 1
o 'soft’ Pomeron becomes undercritical in the dense limit:
Upgor < 1
s 'soft’ Pomeron dominates at large b (larger slope)

- ! ! H ren
@ 'hard’ Pomeron dominates at small b (og, 4 > 1)
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Particular toy model [SO, 2010]

|

Relative importance of 'nets’ & 'loops’

o
E 2007 tot/el for th
s : @ compare G, for the
g N .
% 150 [ full resummation
S B @ or including 'net’-like
© L
100 [ graphs only
r @ or
50 —
C ‘ ‘ @ = neither 'nets’ nor
N = == e a R R , ) .
10° 10° 10" 10° 'loops’ are negligible
c.m. energy (GeV)

@ NB: relative contribution of P-loops strongly depends on o,
@ simpliest loop contribution o< G35,/ 0

@ = — oo for ap — 0 (assuming the slope for the 3P-vertex ~ 0)

@ in the above example, ot . = 0.14 GeV~* was used
I
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Oosp & non-eikonal rap-gap suppression

@ schematic diagram for single high mass diffraction:

@ C: (real) parton cascade which
Y ] produces hadrons

@ A,B: (virtual) parton cascades which
transfer momentum

@ D,E: virtual rescatterings which
C suppress diffraction
‘ PP
p (eikonal rap-gap suppression factor)

NB: generally, also multiple exchanges of the ABC subgraph

?eg. reqwred by s-channel unitarity for DD (at small b)

A
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@ importance of higher order corrections to the ABC-subgraph?
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@ C: (real) parton cascade which
produces hadrons

A B @ A,B: (virtual) parton cascades which

D .y, E transfer momentum

o D,E: virtual rescatterings which
CF suppress diffraction
(eikonal rap-gap suppression factor)
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@ compare different approximations for the ABC-subgraph:

o full resummation
° (A, B & C — uncut/cut Froissarons)
& just the triple-Pomeron contribution

@ in all the cases, full resummation is used for D & E



Oosp & non-eikonal rap-gap suppression

@ importance of higher order corrections to the ABC-subgraph?

@ compare different approximations for the ABC-subgraph:
o full resummation
° (A, B & C — uncut/cut Froissarons)
& just the triple-Pomeron contribution

@ in all the cases, full resummation is used for D & E

Impact on osp (high mass) & diffraction profile at 14 TeV c.m.

O )
(
-

AL vl il ) <
10 > 5 10




QGSJET-II model: 'semihard Pomeron’

@ RFT-based treatment of multiple scattering

@ basic ingredient: treatment of an individual parton cascade



QGSJET-II model: 'semihard Pomeron’

@ RFT-based treatment of multiple scattering

@ basic ingredient: treatment of an individual parton cascade



QGSJET-II model: 'semihard Pomeron’

@ RFT-based treatment of multiple scattering
@ basic ingredient: treatment of an individual parton cascade

@ important: transverse development (Ab* ~ 1/Aq?)



QGSJET-II model: 'semihard Pomeron’

@ RFT-based treatment of multiple scattering

(]

basic ingredient: treatment of an individual parton cascade

important: transverse development (Ab? ~ 1/Ag?)

(]

(]

e.g. for soft cascades:
quick transverse spread & low parton density



QGSJET-II model: 'semihard Pomeron’

(]

RFT-based treatment of multiple scattering

(]

basic ingredient: treatment of an individual parton cascade

important: transverse development (Ab? ~ 1/Aq?)

(]

(]

e.g. for soft cascades quick transverse spread

& low parton density ‘ ‘

hard cascades: frozen in transverse space
but high density rise ‘

(]



QGSJET-II model: 'semihard Pomeron’

@ e.g. for soft cascades quick transverse spread
& low parton density

@ hard cascades: frozen in transverse space but
high density rise

@ semihard cascades: quick expansion during
'soft preevolution’ followed by the density rise

@ = dominant in high energy limit




QGSJET-Il model: 'semihard Pomeron’

@ e.g. for soft cascades quick transverse spread
& low parton density

@ hard cascades: frozen in transverse space but
high density rise

@ semihard cascades: quick expansion during
'soft preevolution’ followed by the density rise

@ = dominant in high energy limit




QGSJET-Il model: 'semihard Pomeron’

@ e.g. for soft cascades quick transverse spread
& low parton density

@ hard cascades: frozen in transverse space but
high density rise

@ semihard cascades: quick expansion during
'soft preevolution’ followed by the density rise

Phenomenologlcal treatment [Ka/mykov & SO, 1994,1997]

@ soft Pomerons to describe soft (parts of) cascades (p7 < Q3)
@ = transverse expansion governed by the Pomeron slope

soft Pomerol

@ DGLAP for hard cascades QCD ladder

1
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Diffraction at LHC

o forward rap-gap (ng) distribution: QGSJET-II-04 wrt ATLAS
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Diffraction at LHC

o forward rap-gap (ng) distribution: QGSJET-11-04 wrt ATLAS
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@ overall trend — similar
o but: rate in variance with ATLAS
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SD, DD, CD: b-profiles

. b profiles for pp at /s =5 TeV:
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SD, DD, CD: b-profiles

Cf.: b profiles for p— Pb at /s =
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From SFs to G)): saturation or multi-parton correlations?

@ 'Marry’ slow energy rise of 6,); and the steep increase of F,?

o production of minijets along = too high 6

[Rogers, Strikman & Stasto, 2008]

@ nonlinear parton dynamics — crucial
@ does parton saturation solve the problem?

@ mimicked in models by energy-dependent cutoff: Qyp = Qy(s)

o but: saturation doesn't hold for large b (which dominate },)

@ what is different in pp compared to DIS?

i
1
1
|

|

' I

I

I

@ in np: rescattering off the 4(x. Q') !
non-inclusive observables can't be described with universal PDFs
(additional screening corrections are process-dependent)

@ in DIS: rescattering of P
intermediate partons off
the parent hadron

‘(XQ)
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@ now hard screening
(hard elastic rescattering)

@ and double hard scattering
(production of 2 jet pairs)

@ no effect for inclusive jet spectra
[(—2) x 14 (+1) x2=0]

@ but: screening correction for 6,
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Multi-Pomeron interactions & multi-parton correlations

@ now hard screening
(hard elastic rescattering)

@ and double hard scattering
(production of 2 jet pairs)

@ no effect for inclusive jet spectra
[(—2) x 14 (+1) x2=0]

@ but: screening correction for 6,

[(-2)+ (+1) = 1 |

weight: -2 weight: +1

additional screening caused by multi-parton correlations
@ two hard parton cascades originate from the same soft parent
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@ but: screening correction for o))

why the effect so strong?
@ double hard scattering from independent
cascades: mostly in central collisions

@ correlated partons are close-by in b-space
(two sub-cascades start from the same b)

@ = also in peripheral collisions
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Multi-Pomeron interactions & multi-parton correlations

@ now hard screening
(hard elastic rescattering)

@ and double hard scattering
(production of 2 jet pairs)

@ no effect for inclusive jet spectra
[(=2) x 1+ (4+1) x2=0]

@ but: screening correction for 6,

[(C2)+(+1) = 1] i

weight: -2 weight: +1

= multi-parton interactions provide a key to understand GI‘,"[}
(and vice versa)




Multi-Pomeron interactions & multi-parton correlations

® now hard screening
[llustration: b-profiles for MPI for pp at 14 TeV c.m. (QGSJET-II)

@ NB: more stringent limits on Qg from N, data

o = 03 =3 GeV? used
o = factor of 10 weaker effect here
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Multi-parton interactions: perturbative splitting

@ 3 — 4 contrib. to double parton scatt.: collinearly enhanced
[Blok et al., 2011; Ryskin & Snigirev, 2011; Gaunt, 2012]

@ may also impact o7

@ = attempt to include in the model
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triangle’ wrt soft evolution
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Multi-parton interactions: perturbative splitting

@ only 3 — 4 contribution
@ assume AGK rules

@ neglect b-size of the 'hard
triangle’ wrt soft evolution

@ = 'hard triangle’ works as an
effective 3P-vertex
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Double Pomeron exchange (DPE) & CDF data

@ CDF obtained rather large G,I,)[—?E (~0.2x G;[‘])))

2 2
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(p & p contributions)
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Double Pomeron exchange (DPE) & CDF data

Caveat: the small rap-gap (ygap = In&p ~ 2+ 3) may be formed by
fluctuations in particle production

@ check with QGSJET-II simulation: all events with
0.035 < &5 < 0.095 (exp. triggers NOT implemented)

i L] L]

Je similar fraction of events with
&, < 0.02 obtained (~0.2)

1/N dN/d(lg &)

Bottom line:

@ accurate studies of -dependence necessary for a reliable
determination of DPE cross section
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