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Cosmic ray studies with extensive air shower techniques

measurements of EAS fluorescence light

primary CR energy ⇐⇒ integrated light

CR composition ⇐⇒ shower maximum position Xmax



Cosmic ray studies with extensive air shower techniques

CR composition studies – most dependent on interaction models

e.g. predictions for Xmax depend on σinel
p−air, σdiffr

p−air

predictions for muon density – on the multiplicity Nch
π−air
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Enhanced Pomeron diagrams

in the dense limit (high energy & small b):
Pomeron-Pomeron interactions important
[Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

e.g. simpliest graphs:

(a) (b) (c) (d) (e) (f) (g)

describe elastic re-scattering of intermediate partons off the
projectile/target hadrons & off each other

why all-order resummation?

higher order (wrt G3P) contributions rise quicker with energy

have altering signs

Diagrammatic resummation [SO, 2006, 2008, 2010]

define some elementary ’building blocks’

construct arbitrary enhanced graphs out of them

correct for double (triple, etc.) counting

similarly for cut diagrams (based on AGK-rules)
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In turn, contain Pomeron ’loop’ sequences (examples)
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Examples of graphs not included in the procedure
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Enhanced Pomeron diagrams

the above-discussed diagrammatic resummation is generic

but: particular assumptions on the Pomeron amplitude &
multi-Pomeron vertices needed

to check the importance of the neglected graphs

to check s-channel unitarity of the approach

choose the vertex for mP→ nP: G(m,n) = G3P γm+n−3
P

⇒ ’renormalized’ soft Pomeron in the dense limit
[Kaidalov et al., 1986]: αren

P
= αP−G3P/γP

NB: applies for αren
P

> 1 only
(for G3P/γP > αP− 1, σtot(s)→ const for s → ∞)

⇒ positive-definite cross sections for various final states

neglected contributions – negiligible (smaller than 1/mille)
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Relative importance of ’nets’ & ’loops’
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graphs only

or including Pomeron
loops only

⇒ neither ’nets’ nor
’loops’ are negligible

NB: relative contribution of P-loops strongly depends on α′
P

simpliest loop contribution ∝ G2
3P/α′

P

⇒ → ∞ for α′
P
→ 0 (assuming the slope for the 3P-vertex ≃ 0)

in the above example, α′
Psoft = 0.14 GeV−2 was used
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C: (real) parton cascade which
produces hadrons

A,B: (virtual) parton cascades which
transfer momentum

D,E: virtual rescatterings which
suppress diffraction
(eikonal rap-gap suppression factor)

NB: generally, also multiple exchanges of the ABC subgraph

e.g. required by s-channel unitarity for DD (at small b)

+

2

= + +
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RFT-based treatment of multiple scattering

basic ingredient: treatment of an individual parton cascade

important: transverse development (∆b2 ∼ 1/∆q2)

e.g. for soft cascades quick transverse spread
& low parton density

hard cascades: frozen in transverse space
but high density rise
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resonance excitations (e.g. N∗)
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may be treated with Good-Walker mechanism

high mass diffraction (HMD):

traditionally described by PPP-asymptotics (∝ dM2
X/(M

2
X)

αP(0))

often implemented as ∝ dM2
X/M2

X (i.e. for αP(0) = 1)

NB: M2
X-distribution for HMD – strongly modified by

absorptive effects [SO, 2011]

important for extrapolating
from σvis to σinel
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Comparison to preliminary TOTEM results for SD

MX, GeV 3.4−7 7−350 350−1100

ξX (2.4− 10) ·10−7 10−6 − 2.5 ·10−3 (2.5− 25) ·10−3

TOTEM 1.8 3.3 1.4

model 2.3 4.8 1.6

model/data 1.3 1.5 1.2

overall trend – similar

but: rate in variance with ATLAS
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SD, DD, CD: b-profiles

Example: b profiles for pp at
√

s = 5 TeV:
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SD, DD, CD: b-profiles

Cf.: b profiles for p−Pb at
√

s = 5 TeV:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

σ
(b

)

b (fm)

p-Pb: inel
p-Pb: SDp

p-Pb: SDPb
pp: inel

pp: SD/2



SD, DD, CD: b-profiles

Cf.: b profiles for p−Pb at
√

s = 5 TeV:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

σ
(b

)

b (fm)

p-Pb: inel
p-Pb: SDp

p-Pb: SDPb
pp: inel

pp: SD/2

σ
proj
SD : ∼ 3% of σinel

σ
targ
SD ∼ 1

2
σ

proj
SD



SD, DD, CD: b-profiles

Cf.: b profiles for p−Pb at
√

s = 5 TeV:
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From SFs to σtot
pp: saturation or multi-parton correlations?

’Marry’ slow energy rise of σtot
pp and the steep increase of F2?

production of minijets along ⇒ too high σtot
pp

[Rogers, Strikman & Stasto, 2008]

nonlinear parton dynamics – crucial

does parton saturation solve the problem?

mimicked in models by energy-dependent cutoff: Q0 = Q0(s)

but: saturation doesn’t hold for large b (which dominate σtot
pp)

what is different in pp compared to DIS?

in DIS: rescattering of
intermediate partons off
the parent hadron

in pp: rescattering off the
target hadron in addition

p p

p
...

(x, Q  )2 (x, Q  )2

non-inclusive observables can’t be described with universal PDFs
(additional screening corrections are process-dependent)
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From SFs to σtot
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How strong is the effect?

nonfactorizable
corrections dominate!
[SO, 2006]

why and how?!

related to multi-parton
correlations [Rogers &
Strikman, 2010]
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Multi-Pomeron interactions & multi-parton correlations

now hard screening
(hard elastic rescattering)

and double hard scattering
(production of 2 jet pairs)

no effect for inclusive jet spectra
[(−2)×1+(+1)×2 = 0]

but: screening correction for σtot
pp

[(−2)+ (+1) =−1]

⇒ multi-parton interactions provide a key to understand σtot
pp

(and vice versa)
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and double hard scattering
(production of 2 jet pairs)

no effect for inclusive jet spectra
[(−2)×1+(+1)×2 = 0]

but: screening correction for σtot
pp
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Illustration: b-profiles for MPI for pp at 14 TeV c.m. (QGSJET-II)

NB: more stringent limits on Q0 from Nch data
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Multi-parton interactions: perturbative splitting

3 → 4 contrib. to double parton scatt.: collinearly enhanced
[Blok et al., 2011; Ryskin & Snigirev, 2011; Gaunt, 2012]

may also impact σtot
pp?

⇒ attempt to include in the model
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Multi-parton interactions: perturbative splitting

only 3 → 4 contribution

assume AGK rules

neglect b-size of the ’hard
triangle’ wrt soft evolution

⇒ ’hard triangle’ works as an
effective 3P-vertex
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Double Pomeron exchange (DPE) & CDF data

CDF obtained rather large σDPE
pp̄ (≃ 0.2×σSD

pp̄ )
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Caveat: the small rap-gap (ygap = lnξp̄ ≃ 2÷3) may be formed by
fluctuations in particle production

check with QGSJET-II simulation: all events with
0.035 < ξp̄ < 0.095 (exp. triggers NOT implemented)
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similar fraction of events with
ξp < 0.02 obtained (≃ 0.2)

but: dominated by SD
(p & p̄ contributions)

DPE: only ∼ 10% contribution
at ξp < 0.02

Bottom line:

accurate studies of t-dependence necessary for a reliable
determination of DPE cross section


