Airton Deppman

HEP and non-perturbative QCD

The Hagedorn's theory

Experimenta verification

Phase transit of the hadror medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization of the Hagedorn's

Self-consistency in the

non-extensive thermodynamics

Consistency wit thermodynamical

Experimental evidences for the limiting

Thermodynamica

Non-extensivity of hadronic systems

Airton Deppman

First KWPPP - Moscow - July, 2013

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn's theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT duali

Generalization of the Hagedorn's formula

Self-consistency

non-extensive

Consistency with

cal

Experimental evidences for the limiting temperature

Thermodynamical functions

onelusions

Airton Deppman

Consistency with

cal

Airton Deppman

Consistency with cal

Airton Deppman

Consistency with cal

Airton Deppman

HEP and non-perturbative QCD

The Hagedorn theory

Experiment verification

of the hadroni medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency in the

non-extensive thermodynamics

Consistency wit thermodynamical functions

Experimental evidences for the limiting temperature

Thermodynamic functions

Outline

- HEP and non-perturbative QCD.
- Hagedorn's theory.
- Experimental verification of the theory.
- Non-perturbative-QCD, lattice-QCD and AdS/CFT.
- Generalization of Hagedorn's formalism.
- Non-extensive self-consistent theory.
- Experimental evidences of non-extensive self-consistency.
- Thermodynamical functions and lattice-QCD.
- · Conclusions.

Airton Deppman

HEP and non-perturbative QCD

The Hagedorr

Experiment verification

Phase transition of the hadroni medium

HRG models, lattice-QCD and AdS/CFT duali

Generalization the Hagedorn's formula

Self-consistency in the

thermodynamics Consistency wit

thermodynamical functions

Experimental evidences for the limiting temperature

functions

The non-perturbative river

QCD is a well-known theory for strong interaction and works very well for Particle Physics.

In Nuclear Physics it faces some problems: non-perturbative character.

We need a bridge!

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn's theory

Experiment verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT duali

Generalization of the Hagedorn's

Self-consistency

non-extensive thermodynamics

Consistency with

Experimental evidences for th

cal

evidences for the imiting temperature

Thermodynamic functions

Hagedorn's theory

A hadronic system is considered as an ideal gas of hadrons a a temperature \mathcal{T} . The partition function is

$$ln[1+Z(V_0,T)] = \frac{V_0T}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \int_0^{\infty} \rho(m;n) m^2 K_2(\beta n m) dm.$$

The bootstrap idea is:

Fireball is "*the static equillibrium of a system composed by fireballs, which on their turn are ... (goto *)"

The partition function can also be written as

$$Z(V_0,T) = \int_0^E \sigma(E')Z_0(E')dE'$$

According to the bootstrap principle, both forms of partition function must be asymptotically identical with

$$\ln[\sigma(E')] = \ln[\rho(m)]$$

Airton Deppman

HEP and non-perturbati QCD

The Hagedorn's theory

verification

Phase transitio of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's

Self-consistency

non-extensive thermodynamics

Consistency v thermodynam cal

Experimental evidences for t limiting temperature

Thermodynamic functions

Self-consistency

Both constraints can be satisfied with

$$\sigma(E) \rightarrow b \, E^{\alpha-1} \, e^{\beta_o E}$$

$$ho(m)
ightarrow m^{-5/2} e^{eta_o m}$$

And in this case both expression for the partition function reduce to

$$Z(V_o, T) \sim \left(\frac{1}{\beta - \beta_o}\right)^{\alpha}$$

with

$$\alpha = \frac{aV_0}{(2\pi\beta_0)^{3/2}}$$

Airton Deppman

HEP and non-perturbative QCD

The Hagedorn' theory

Experimental verification

Phase transitio of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency

non-extensive thermodynamics

Consistency wit thermodynamical

Experimental evidences for the limiting temperature

Thermodynami functions

Experimental verification

With

$$\bar{\nu_k} = -\frac{1}{\beta} \frac{\partial \ln Z(T)_{\pm}}{\partial \epsilon_k}$$

and using the thermodynamical relations we get

$$ar{
u_k} = e^{-eta_0 \epsilon_k} \Rightarrow \mathit{In}(ar{
u_k}) = -eta_0 \epsilon_k$$

It is more usefull to write it in terms of the transversal momemtum. Using

$$\epsilon = \sqrt{p_{\perp} + p_z^2 + m^2}$$

we get, for $p_{\perp} >> T_0 >> m$,

$$w(p_{\perp}) pprox C \cdot p_{\perp}^{3/2} exp\left(-rac{p_{\perp}}{T_0}
ight)$$

Airton Deppman

HEP and non-perturbative QCD

The Hagedorn theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's

Self-consistency

non-extensive thermodynamics

thermodyna cal

Experimental evidences for t

Thermodynamic

onelusions

Phase transition

Volume 59B, number 1

PHYSICS LETTERS

13 October 1975

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N CABIBBO

Istituto di Fisica, Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy

G. PARISI

Istituto Nazionale di Fisica Nucleare, Frascati, Italy

Received 9 June 1975

The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting temperajure, but it is present in any system which undergoes a second order phase transition. We suggest that the "observed" exponential spectrum is connected to the existence of a dilterent phase of the vacuum in which quarks are not confined.

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD an AdS/CET dual

Generalization the Hagedorn's

Self-consistency in the

non-extensive thermodynamics

Consistency wit thermodynamical functions

Experimental evidences for the limiting temperature

I hermodynamic functions

Validade da Teoria de Hagedorn

Hagedorn's works nicely up to $\sqrt{s} \approx 10$ GeV. For higher energies:

Airton Deppman

HEP and non-perturbati QCD

The Hagedorn theory

Experiment verification

of the hadroni medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization the Hagedorn's formula

Self-consistency

non-extensive

thermodynan cal

Experimental evidences for th limiting temperature

Thermodynamic functions

Other possible bridges

Lattice QCD

Duality AdS/CFT

trace-anomaly

speed of sound

viscosity

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn theory

Experiment verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization of the Hagedorn's

Self-consistency in the

non-extensive thermodynamics

thermodynami cal functions

Experimental evidences for th limiting temperature

functions

Hadron Resonance Gas Models

F. Karsch et al.: Hadron resonance mass spectrum and lattice QCD thermodynamics

EPJC 2003

Mod. Phys. Lett A 2011

J. Noronha-Hostler et al. arXiv:1206.5138 for a recent comparison of different mass spectra.

Airton Deppman

HEP and non-perturbation

The Hagedorn theory

Experiment verification

Phase transiti of the hadron medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization o the Hagedorn's

Self-consistency

non-extensive thermodynamics

Consistency of thermodynan cal

Experimental evidences for the limiting temperature

functions

Hadron Resonance Gas Models - problems

Eur. Phys. J. C (2010) 66: 207–213 DOI 10.1140/epjc/s10052-009-1231-8 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

The speed of sound in hadronic matter

P. Castorina¹, J. Clevmans², D.E. Miller^{3,4,a}, H. Satz³

¹Dipartimento di Fisica, Università di Catania and INFN Sezione di Catania, 95123 Catania, Italy

²Physics Department, University of Cape Town, Cape Town, South Africa

³Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany

The partition function of an ideal gas of constituents of $\max m(T)$ is in the Boltzmann limit for SU(N) gauge theory given by

$$\ln Z(T) = 2 \frac{(N^2 - 1)V}{2\pi^2} \int_0^{\infty} dp \ p^2 \exp\left(-\frac{1}{T}\sqrt{p^2 + m^2}\right)$$

$$= 2 \frac{(N^2 - 1)VTm^2}{2\pi^2} K_2\left(\frac{m}{T}\right). \quad (15)$$

where $K_i(x)$ denotes the Hankel function of imaginary argument. The resulting pressure becomes

$$\begin{split} P(T) &= T \left(\frac{\partial \ln Z}{\partial V} \right)_T \\ &= 2 \frac{(N^2 - 1)T}{2\pi^2} \int_0^\infty dp \; p^2 \exp \left(-\frac{1}{T} \sqrt{p^2 + m^2} \right) \\ &= 2 \frac{(N^2 - 1)T^2 m^2}{2\pi^2} K_2 \left(\frac{m}{T} \right) \end{split} \tag{16}$$

while the energy density is found to be

1 Introduction

The abundant formation of resonances of increasing mass and rotational degrees of freedom B one of the most striking features of strong interaction physics, which has attracted intense, theoretical attention for half a century or more. Even before the quark infrastructure of hadrons was known, a self-similar composition scheme, the statistical bootstrap model (SBM), led to an exponentially increasing resonance spectrum [1, 2]. Shortly thereafter the dual resonance model (DRM) provided a description of hadron interactions in

Department of Physics, Pennsylvania State University, Hazleton Campus, Hazleton, PA 18202, USA

Airton Deppman

HEP and

The Hagedorn' theory

Experimenta verification

Phase transit of the hadror medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization of the Hagedorn's formula

Self-consistence in the non-extensive

thermodynamics

cal functions

Experimental evidences for th limiting temperature

Thermodynamica functions

onelusions

Modern Physics Letters A Vol. 26, No. 16 (2011) 1197–1209 © World Scientific Publishing Company DOI: 10.1142/S0217732311035584

THE HAGEDORN TEMPERATURE REVISITED

J. CLEYMANS and D. WORKU

UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, South Africa

increase determines the value of the Hagedorn temperature, $T_{\rm H}$. Recent papers, $^{16-21}$ have used the latest results from the Particle Data Group 15 to revisit the original analysis of Hagedorn to update the value of $T_{\rm H}$. This resulted in a surprising wide spread of possible values, with large variations as to whether one considers mesons or baryons with values ranging from $T_{\rm H}=14$ MeV to $T_{\rm H}=30$ MeV depending on the parametrization used and on the set of hadrons (mesons or baryons). There thus exists uncertainty as to the value of the Hagedorn temperature. These have two origins:

- $\bullet\,$ sparse information about hadronic resonances certainly above 3 GeV,
- the analytical form of the Hagedorn spectrum, especially the factor multiplying the exponential.

Airton Deppman

HEP and non-perturbativ

The Hagedorn theory

Experiment verification

of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency

non-extensive thermodynamic

functions

Experimental
evidences for the

cal

experimental evidences for the limiting temperature

functions

Introducing non-extensivity: Bediaga's generalization

Bediaga:

$$x_{ij} = (1 + (q-1)\beta\epsilon_{ij})^{-q/(q-1)}$$

Partition function:

$$logZ = -\sum_{ij} log(1 - x_{ij}) + \sum_{i'j'} log(1 + x_{i'j'})$$

and ...

$$w(p_\perp) pprox const \cdot p_\perp \int_0^\infty dp_L (1+(q-1)eta \sqrt{p_\perp^2+p_L^2+m_0^2})^{-rac{q}{q-1}}$$

Transverse momentum distribution (C. Beck):

$$\frac{1}{q}\frac{d\sigma}{d\rho_{\perp}} = c \left(2(q-1)\right)^{-1/2} B\left(\frac{1}{2}, \frac{q}{q-1} - \frac{1}{2}\right) u^{3/2} (1 + (q-1)u)^{-\frac{q}{q-1} + \frac{1}{2}}$$

with

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn theory

Experimenta verification

Phase transiti of the hadron medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency in the

non-extensive thermodynamics

Consistency with thermodynamical

Experimental evidences for the limiting

Thermody

Comparison of Bediaga's formula with experiment

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn theory

Experiment verification

of the hadroni medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization o the Hagedorn's formula

Self-consistency in the

non-extensive thermodynamics

thermodynai cal functions

Experimental evidences for th limiting temperature

functions

Self-consistency in the non-extensive thermodynamics

$$Z_q(V_o, T) = \int_0^\infty \sigma(E) [1 + (q-1)\beta E]^{-\frac{q}{(q-1)}} dE$$

and

$$\ln[1 + Z_q(V_o, T)] = \frac{V_o}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} \int_0^{\infty} dm \int_0^{\infty} dp \, p^2 \rho(n; m) \times [1 + (q-1)\beta \sqrt{p^2 + m^2}]^{-\frac{nq}{(q-1)}},$$

The bootstrap principle

$$Z_q(V_o, T) = \int_0^\infty \sigma(E) [1 + (q - 1)\beta E]^{-\frac{q}{(q - 1)}} dE$$

$$= \exp\left\{ \frac{V_o}{2\pi^2 \beta^{3/2}} \int_0^\infty dm \, m^{3/2} \rho(m) [1 + (q - 1)\beta m]^{-\frac{1}{q - 1}} \right\} - 1$$

At the same time we must have

$$\ln[\sigma(E)] = \ln[\rho(m)]$$

onclusions

Airton Deppman

Self-consistency in the non-extensive

thermodynamics

cal

Mass spectru and density of states

The self-consistency principle is satisfied if

$$m^{3/2}\rho(m) = \frac{\gamma}{m} \left[1 + (q_o - 1)\beta_o m \right]^{\frac{1}{q_o - 1}} = \frac{\gamma}{m} \left[1 + (q'_o - 1)m \right]^{\frac{\beta_o}{q'_o - 1}}$$

and

$$\sigma(E) = bE^{a} [1 + (q_o' - 1)E]^{\frac{\beta_o}{q_o' - 1}}$$

Using properties of $\Gamma(z)$ function it results that for $(q'_0 - 1) \to 0$,

$$Z_q(V_o,T) o b\Gamma(a+1) \left(rac{1}{eta-eta_o}
ight)^{a+1}$$

Then both expression for the partition function Z_a converge if

$$a+1=\alpha=\frac{\gamma V_o}{2\pi^2\beta^{3/2}}$$

Limiting temperature: β_o and entropic index: q_o .

A. Deppman, Physica A 391 (2012) 6380–6385.

Airton Deppman

HEP and non-perturbation

The Hagedorn' theory

Experimental verification

of the hadronic

HRG models, lattice-QCD and AdS/CFT dualit

Generalization o the Hagedorn's formula

Self-consistency in the

Consistency with thermodynamical functions

Experimental evidences for the limiting temperature

Thermodynamic functions

Consistency with thermodynamical functions

 $\mathsf{Tsallis} \to \mathsf{Thermodynamical} \ \mathsf{relations} \to \mathsf{Bediaga} \ \mathsf{formula?}$

J.M. Conroy, H.G. Miller and A.R. Plastino Phys. Lett A 374 (2010) 4581 \rightarrow No!

$$n_i = (1 + [1 + (q-1)\beta(E-\mu)]^{(1/(q-1)})^{-q}$$

But for $E \to \infty$ it reduces to Bediaga formula!

Also: J Cleymans e D Worku: JPG 39 (2012) 025006.

$$\frac{dN}{dp_T} = gV \frac{dN}{dy} \frac{p_T m_T \cosh y}{4\pi^2} \left[1 + (q-1) \frac{m_T \cosh y - \mu}{T} \right]^{-q/(q-1)}$$

However STAR, PHENIX, ALICE, CMS still use

$$\frac{dN}{dp_{T}} = p_{T} \frac{dN}{dy} \frac{(n-1)(n-2)}{nC[nC + m_{o}(n-2)]} \left(1 + \frac{m_{T} - m_{o}}{nC}\right)^{-n}$$

Airton Deppman

HEP and non-perturbativ

The Hagedorn'

Experiment verification

Phase transiti of the hadron medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's

Self-consistency in the

non-extensive thermodynamics

thermodynai cal functions

Experimental evidences for the limiting temperature

Thermodynamic functions

Evidences from e^+e^- collisions

Bediaga (2000).

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn' theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's

Self-consistency in the

non-extensive thermodynamics

thermodyna cal functions

Experimental evidences for the limiting temperature

Thermodynamica functions

Evidences from pp collisions

Airton Deppman

HEP and non-perturbati QCD

The Hagedorn

Experiment verification

Phase transition of the hadroni

HRG models, lattice-QCD and AdS/CFT duali

Generalization of the Hagedorn's formula

Self-consistency

non-extensive thermodynamic

Consistency wit thermodynamical

functions

Experimental evidences for the limiting temperature

Thermodynamic functions

Evidences from AA collisions

Airton Deppman

HEP and non-perturbative QCD

The Hagedorn theory

Experimenta verification

Phase transition of the hadroni medium

HRG models, lattice-QCD an AdS/CFT dual

Generalization of the Hagedorn's

Self-consistency

non-extensive thermodynamics

Consistency wit thermodynamical

functions

Experimental evidences for the limiting temperature

Tunctions .

q as a function of energy and of arxiv:1208.2952 centrality

Airton Deppman

HEP and non-perturbation

The Hagedorn' theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CET dualit

Generalization of the Hagedorn's formula

Self-consistency

non-extensive thermodynamics

thermodyna cal

Experimental evidences for the limiting temperature

Thermodynamic

. . .

q and T as a function of m

J Cleymans e D Worku: J. Phys. G: Nucl. Part. Phys. 39 (2012) 025006.

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn' theory

Experimenta verification

Phase transition of the hadroni medium

HRG models, lattice-QCD and AdS/CFT duality

Generalization of the Hagedorn's

Self-consistency in the

thermodynamics

cal functions

Experimental evidences for the limiting temperature

Thermodynamica functions

$$T_o = (60\pm7) \text{ MeV } q_o = 1.103\pm0.007$$

Airton Deppman

HEP and non-perturbation

The Hagedorn'

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CET duali

Generalization of the Hagedorn's formula

Self-consistency in the

non-extensive thermodynamics

thermodynai cal functions

Experimental evidences for the limiting temperature

Thermodynamical

Hadron mass spectrum

L. Marques, E. Andrade and AD, Phys. Rev. D 87, 114022 (2013)

Airton Deppman

HEP and non-perturbati QCD

The Hagedori

Experiment verification

Phase transition of the hadroni medium

HRG models, lattice-QCD an AdS/CFT duali

Generalization the Hagedorn's

Self-consistency

non-extensive thermodynamics

Consistency wit

cal functions

Experimental evidences for the limiting temperature

I hermodynami functions

Correlation between T and q

Wilk e Wlodarczyk: Cent. Eur. J. Phys. 10 (2012) 568-575

$$T_{eff} = T_o - (q-1)c$$

 $T_H = (192\pm15) \; ext{MeV} \quad ext{c} = -(950\pm10) \; ext{MeV}$

Airton Deppman

cal

Thermodynamical functions

Thermodynamical functions

$$\frac{1}{V} \ln[Z(V,\beta)] = \frac{\gamma(q-1)}{2\pi^2 \beta^{3/2}} \left(\frac{1}{(\beta - \beta_o)M(q-1)} \right)^{\frac{1}{q-1}} \times_2 F_1 \left[\frac{1}{q-1}, \frac{1}{q-1}, \frac{q}{q-1}, \frac{-1}{(q-1)(\beta - \beta_o)M} \right]$$

 $pressure p = \frac{T}{V} ln[Z(V, \beta)]$ entropy density:

$$\mathbf{s} = \frac{\partial \mathbf{p}}{\partial T}$$

energy density:

$$\varepsilon = \frac{T^2}{V} \frac{\partial}{\partial T} \ln[Z(V, \beta)]$$

trace anomaly:
$$a(T) = \frac{\varepsilon - 3p}{T^2} = T \frac{\partial}{\partial T} \left(\frac{p}{T^4} \right)$$

Airton Deppman

HEP and non-perturbativ QCD

The Hagedorn theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT duali

Generalization the Hagedorn's

Self-consistency

non-extensive

Consistency wit

cal functions

Experimental evidences for the limiting

Thermodynamical functions

. . .

Map between non-extensive and extensive quantities

Mapa entre T e τ :

$$\tau(T_o) = \tau_o$$

$$\tau(0) = 0$$

$$\tau(T_1 + T_2) = \tau(T_1) + \tau(T_2)$$

A função que satisfaz essas condições é:

$$\tau(T) = kT = \frac{\tau_o}{T_o}T$$

From here we get the following relations:

$$\frac{p}{T^4} = k^{-3} \frac{k^{-1}p}{(k^{-1}T)^4} = k^{-3} \frac{\pi}{\tau^4}$$

$$\begin{split} \mathbf{s} &= \sigma \\ \varepsilon &= \mathbf{k}^{-1} \epsilon \\ \mathbf{a} &= \mathbf{k}^{-3} \alpha \,, \end{split}$$

Airton Deppman

HEP and non-perturbation QCD

The Hagedorn'

Experiment verification

Phase transitio of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency in the

non-extensive thermodynamics Consistency with

cal function

Experimental evidences for the limiting temperature

Thermodynamical functions

Comparison to lattice-QCD

Airton Deppman

HEP and non-perturbati QCD

The Hagedorn theory

Experimenta verification

Phase transition of the hadronic medium

HRG models, lattice-QCD and AdS/CFT dualit

Generalization of the Hagedorn's formula

Self-consistency in the non-extensive

thermodynamics Consistency with thermodynamical

Experimental evidences for the limiting temperature

Thermodynamic functions

Conclusions

Conclusions

- It is possible to obtain a self-consistent theory for fireballs in the non-extensive thermodynamics.
- Self-consistency leads to a limiting effective temperature, T_o , and a limiting entropic index, q_o .
- Experimental data for p_T-distributions give support for the existence of T_o and q_o.
- The mass-spectrum formula describes very well the known hadronic states (mesons and barions).
- It is possible to find a connection between extensive and non-extensive thermodynamics functions.
- Thermodynamics functions resulting from the non-extensive self-consistent theory are in agreement with lattice-QCD results.

Airton Deppman

HEP and non-perturbative

The Hagedorn's theory

Experimenta verification

Phase transition of the hadronic medium

lattice-QCD and AdS/CFT duality

Generalization of the Hagedorn's

Self-consistency

In the non-extensive

Consistency with

cal

Experimental evidences for th limiting

Thermodynamica

functions

Conclusions

(THAN)q