Result on Exotics searches at ATLAS

V.Maleev

Petersburg Nuclear Physics Institute on behalf of the ATLAS collaboration, IMPW2013

Motivation

- SM works well, and even better with the discovery of the Higgs boson
- But Higgs is light and needs large corrections → new particle with mass ~ TeV is needed
- Other not answered questions
 - Hierarchy problem
 - Dark matter
 - Gravity
 - Number of generations
 - Extra dimensions

— ...

Signatures

Heavy gauge boson

Extra dimensions

Compositeness

Technicolor

Little Higgs

Left-right symmetry

Heavy neutrino

Vector-like quark

Dark Matter

and more ...

Dijet

Dilepton

Diphoton

Diboson

Ditop

Lepton + E_t^{miss}

Photon + E, miss

Same-sign dilepton

Long-lived particles

W/Z + Jets

Jet + E_tmiss

Lepton + Photon

Top + Jets

Multijet

Multilepton

and more ...

Analysis strategy

- Look at some characteristic distribution (invariant mass, transverse mass, p_T spectrum etc.)
- Search for deviation from known background
 - Bump for resonant phenomena
 - Excess in the tail for non-resonant phenomena
- In case no deviation found, set a limit
 - Calculate expected cross-section with all uncertainties
 - Calculate observed cross-section from data
 - Find observed and expected limits using theoretical prediction

Analysis challenge

- About 23 fb⁻¹ delivered by LHC to the ATLAS experiment in 2012 (\sqrt{s} = 8 TeV) and ~21 fb⁻¹ recorded by ATLAS
- Extremely high luminosity 7.7 10³³ cm⁻¹s⁻¹
- Very high pile-up up to 40 collisions/bunch crossing
- Electrons and muons reach p_T~ 1 TeV

Dilepton search: ATLAS-CONF-2013-017

- Heavy gauge boson Z' inspired by GUT, E6 models, Sequential Standard Model ...
- Little Higgs
- Randal-Sundrum graviton, UED
- Technicolor

Highest mass event $m_{ee} = 1.541 \text{ TeV}$

Highest mass event $m_{\mu\mu} = 1.844 \text{ TeV}$

Dilepton limits

	Expected	Observed
SSM Z'	2.85 TeV	2.86 TeV
E ₆ motivated Z'	2.37-2.54 TeV	2.38-2.54 TeV
$G^* (k/\overline{M}_{Pl} = 0.1)$	2.47 TeV	2.47 TeV

Diphoton search:

- ADD model: continuous spectrum
- RS model: resonances

arXiv:1210.8389; NJP 15, 043007 (2013)

Dijet search

- Sensitive to highest mass scales accessible with hadronic final states
- Search for difference between data and dijet fit

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 lnx}$$

Highest mass event m_{jj} = 4.47 TeV

arXiv:1210.1718; JHEP 01 (2013) 029

9

Mass [GeV]

ttbar search: ATLAS-CONF-2013-052

ttbar search

Exclusion limits at 95% CL

$$Z' - 1.74 \text{ TeV}$$

$$g_{kk} - 2.07 \text{ TeV}$$

Diboson searches

WZ [ATLAS-CONF-2013-015]

Extended gauge models

Little Higgs

low scale technicolor

technirho (ρT)

Look resonance in three lepton final state

ZZ [ATLAS-CONF-2012-150]

bulk RS-graviton

Look at *lljj* or llj final state

WZ results

- Exclusion limit at 95% CL
- M_{w'} < 1.18 TeV
- M_{pT} (technimeson)<920 GeV

ZZ results

Exclude @ 95% CL bulk RS (RS1) model (coupling parameter k/M_{Pl} =1.0) with m_{G*} < 850 GeV

MonoX: ATLAS-CONF-2012-147

- Dark Matter particles can SUSY WIMPS (neutralino and gravitino)
- EFT considers possible contact interactions of g, q producing WIMP pairs (χχ) suppressed by a mass scale M* (i.e. intermediate particles too massive to be created directly)
- Limits on $\sigma(pp \rightarrow \chi\chi)$ can be converted to elastic scattering xsection $\sigma(\chi p \rightarrow \chi p)$ to compare with direct searches

- Dark Matter particles can be produced in pp – collision at the LHC
- The Dark Matter should appear as missing energy
- Some SM particle, produced as recoil object for missing E_T, may be used as trigger
- Triggerable object can be jet, photon, Z,

Goodman et al., Phys. Rev. D82, 116010 (2010)

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar{\chi}\chiar{q}q$
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$rac{1}{M_{\star}^2}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$
D11	gg	scalar	$rac{1}{4M_\star^3}ar{\chi}\chilpha_s(G_{\mu u}^a)^2$

MonoX

- Monophoton + E_t^{miss} has one signal region due to low statistics
- Monojet + E_t^{miss} has 4 signal region: E_t^{miss} and jet pT large than 120, 220, 350, 500 GeV

Monojet/Monophoton + MET comparison to direct WIMP detection

- Sensitive to low χ mass range, at m $_{\chi}$ <10 GeV. (No kinematic suppression.)
- For some kind of interactions production search can be very competitive with direct detection.

Recent results on Exotics Searches

~50 Exotics analysis performed by ATLAS Have we missed something?

Search everywhere: ATLAS-CONF-2012-107

- Search in exclusive channels based on events topology (655 channels!!!)
 - No optimization
 - Model independent
- Compare with simulated backgrounds
- Check for deviation between data and SM background
 - Could manifest what to look at

Conclusion

- ATLAS performed as much Exotics searches as can
- No evidence of the New Physics yet
- More results on https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Looking for but not finding is not the same as not looking