

CMS results on Higgs boson discovery S.Semenov(ITEP,Moscow) (For the CMS Collaboration)

International Moscow Workshop on Phenomenology of Particle Physics devoted to the memory of Prof. Alexei Kaidalov July 21-25, Moscow, Russia, 2013

OUTLINE

Introduction Decay modes of new particle

- H-> ZZ
- Н->үү
- H->WW
- Η->ττ
- H-bb

Properties of new particle

Conclusions

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER

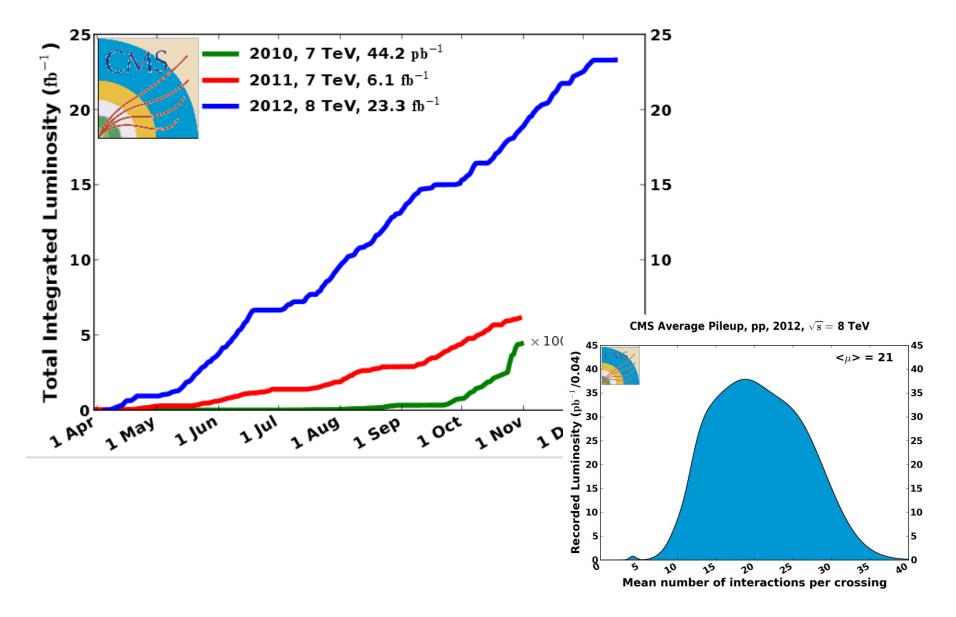
Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

otal weight Overall diameter Overall length

: 14000 tonnes : 15.0 m : 28.7 m

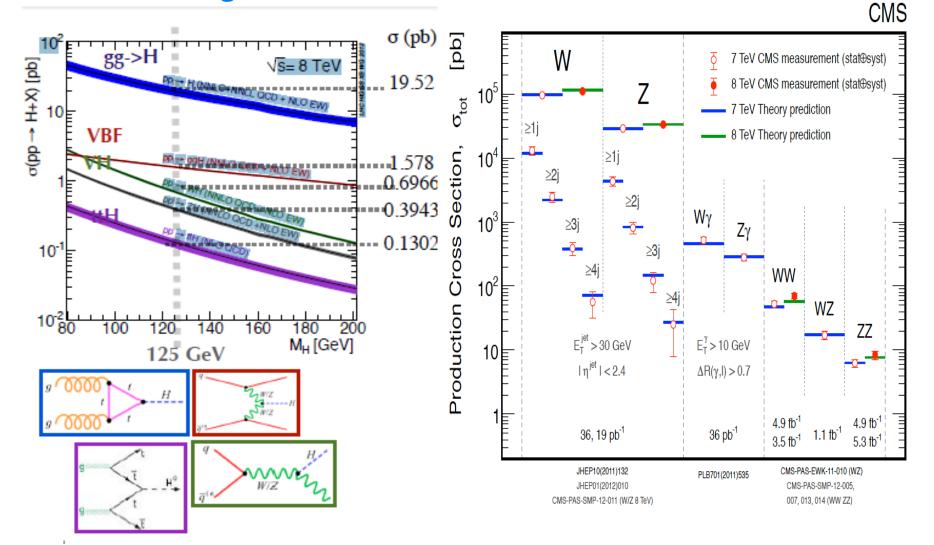

HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD CALORIMETER Steel + quartz fibres ~2k channels

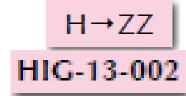
Integral luminosity in pp-interactions CMS



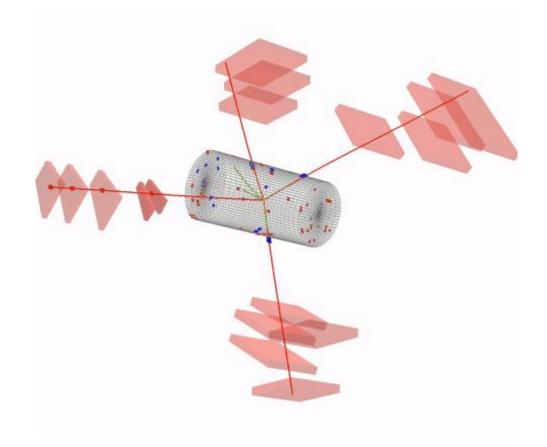
Typical production cross sections

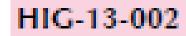
Signal

Background

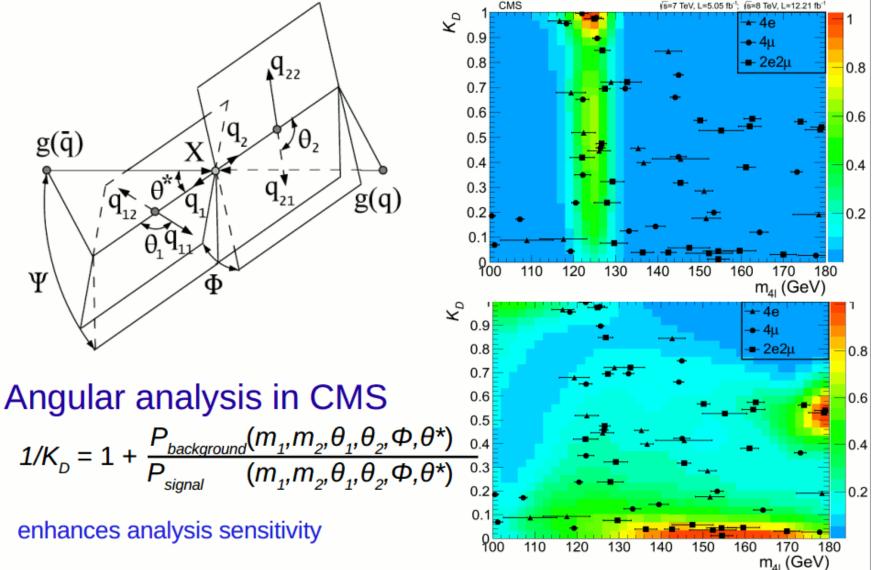


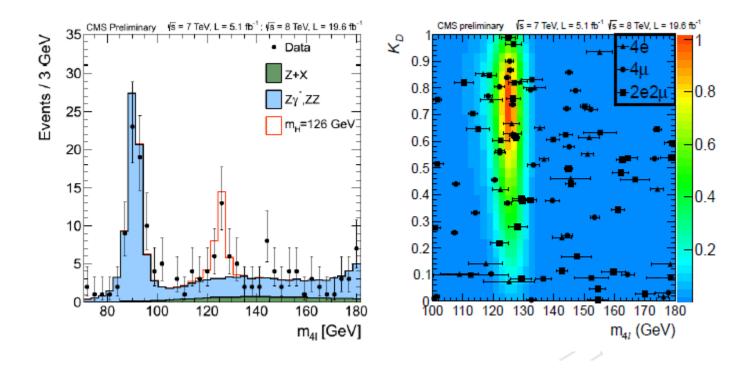
Decay modes sensitive to study Higgs boson

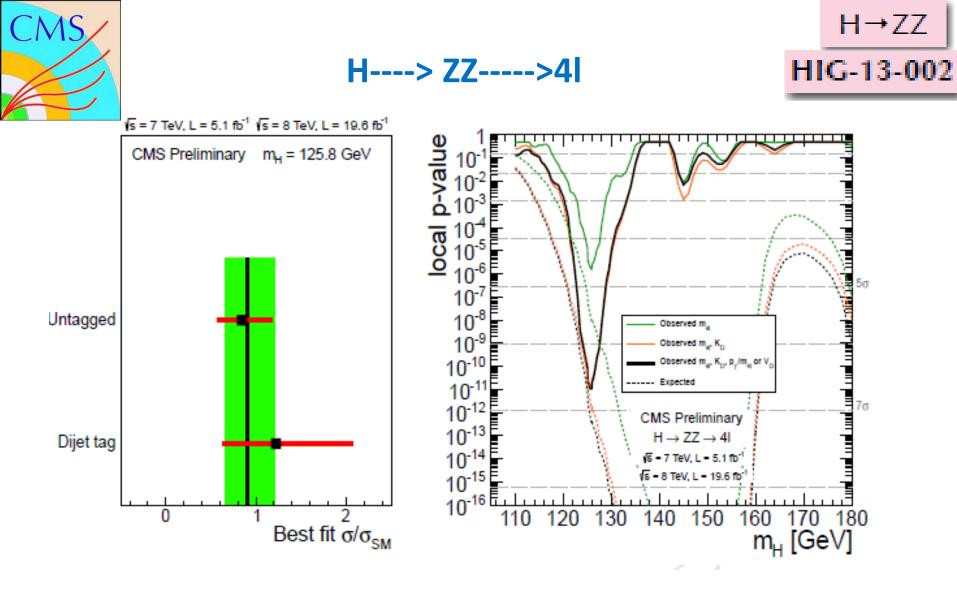

Channel	Range	Lumi (f	⁻ b-1)	Мн
	GeV	7 TeV	8 TeV	resolution
Η> γγ	110-150	5.1	19.6	1-2%
H> ZZ>4I	110-600	5.1	19.6	1-2%
H>WW>II	110-600	4.9	19.5	20%
Η> ττ	110-145	4.9	19.6	15%
H> bb	110-135	5.0	12.1	10%


H ---> Z Z ---> 4|

-- 4 isolated high Pt leptons consistent with Z decay ---- Fit 4-lepton peak over a small background --- 4e, 4μ , 2e2 μ were analyzed separately ----- Split into two categories (2 and more jets, less than 2 jets) to increase sensitivity ---Irreducible background from non-resonant ZZ-production (estimated from MC) ---Reducible background Z-> bb,tt, Z+jets (estimated from data)



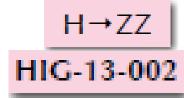

The Golden Mode: $H \rightarrow ZZ \rightarrow 4$



H→ZZ HIG-13-002

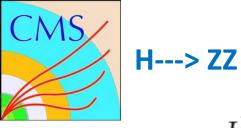
H----> ZZ ----> 4|

M=125.8 ± 0.5(stat.) ± 0.2(syst.)


 $\mu = 0.91(+0.30-0.24)$

 Observed
 6.7 σ

 (Expected
 7.1 σ)

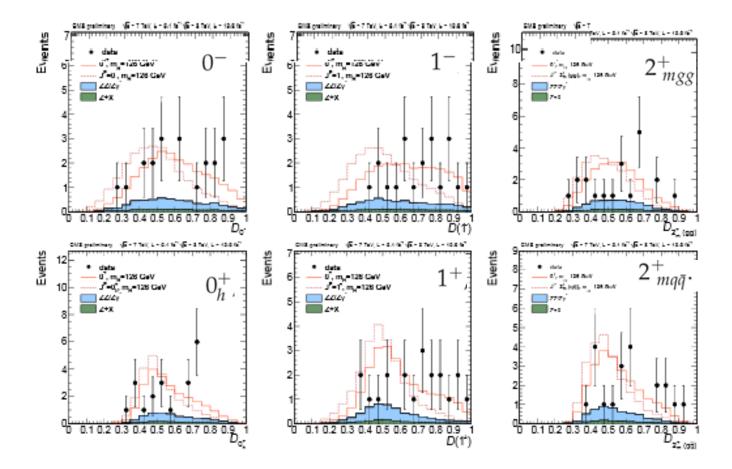


Spin and parity measurement

This channel kinematics is sensitive to spin and parity

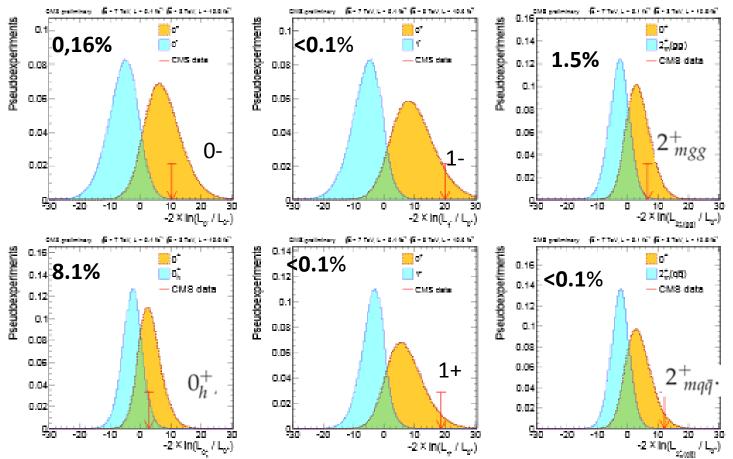
$$\mathcal{D}_{j^{p}} = \frac{\mathcal{P}_{\rm SM}}{\mathcal{P}_{\rm SM} + \mathcal{P}_{j^{p}}} = \left[1 + \frac{\mathcal{P}_{j^{p}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\rm SM}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

J^{P}	production	comment
0-	$gg \to X$	pseudoscalar
0_h^+	$gg \to X$	higher dim operators
2^{+}_{mgg}	$gg \to X$	minimal couplings
$2^+_{mq\bar{q}}$	$q\bar{q} \rightarrow X$	minimal couplings
1	$q\bar{q} \rightarrow X$	exotic vector
1+	$q\bar{q} \rightarrow X$	exotic pseudovector



Spin and parity determination

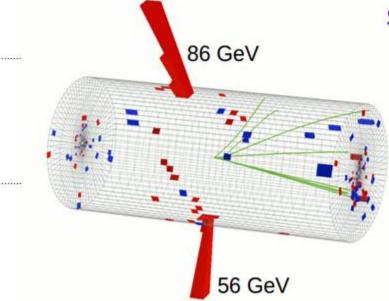
H→ZZ


HIG-13-002

 $J^P = 0^-, 0^+_h, 1^-, 1^+, 2^+_{mgg}, 2^+_{mq\bar{q}}.$

H----> ZZ---->4l. Determination of spin and parity

Red arrow – CMS data


At the left corner the ratio of probability of checked hypothesis to probability of 0+ shown

H→ZZ

HIG-13-002

CMS

Η-> γγ

Signature and background

• two high momentum photons

HIG-13-001

- low mass Higgs narrow
- two photon resolution excellent
- looking for narrow peak
- large irreducible background from direct two photons
- smaller fake photon background

Key analysis features

- energy resolution is almost everything: calibrate and optimize
- rejection of fake photons and optimized use of kinematics

MVA –analysis was applied Cut-based analysis used as a cross-check MVA increase sensitivity by 15 % Both analyses were compatible within 2 σ

Diphoton vertex identification

-The mean number of pp-interaction per BX is 9.5(19.9) at 7 TeV(8 TeV) Their distribution in z-direction has an RMS spread of about 6 cm (5 cm)

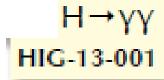
-To avoid degradation of mass resolution the distance between choosen vertex and true one should be below 1 cm

-The balance and asymmetry of pT for all tracks and diphoton system for each vertex were studied (BDT)

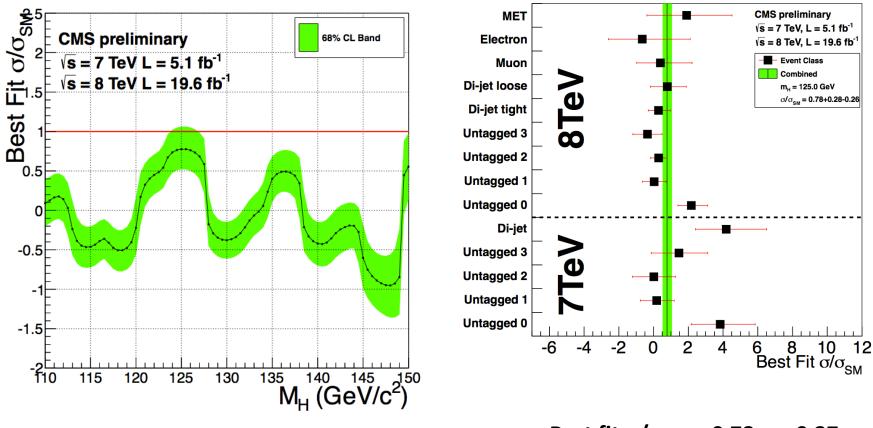
-With efficiency of 80 % diphoton vertex was located within 1 cm of its true position Vertex-finding efficiency was measured with Z-> $\mu\mu$ (remove muon tracks to mimic the presence of two photon)

To increase sensitivity and better describe background behavior all statistics was divided to 14 classes

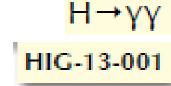
H→vv

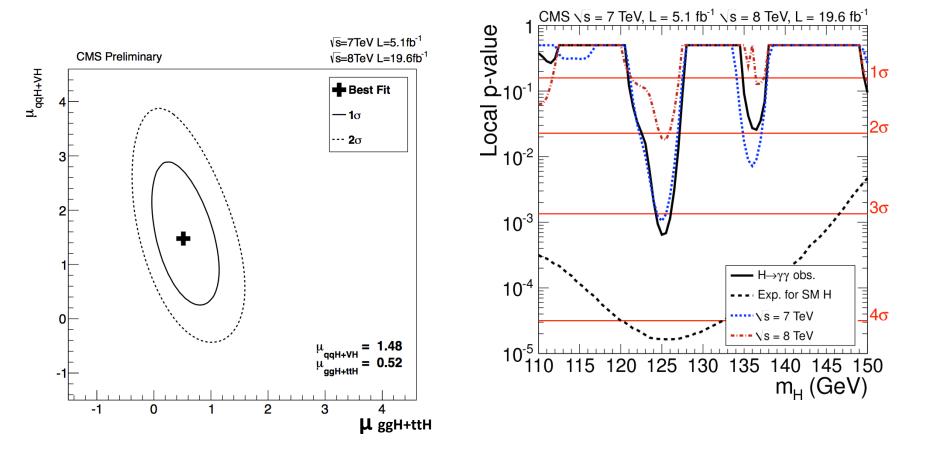

HIG-13-001

Exp	Expected signal and estimated background									
Event classes		SM Higgs boson expected signal (m _H =125 GeV)						Background		
	ent classes				$\sigma_{\rm eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{GeV}$			
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./GeV)	
ī	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3 ± 0.4	
1.16	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5 ± 1.3	
5.1	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8 ± 1.9	
TeV	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6 ± 3.0	
r.	Dijet tag	2.9	26.8%	72.5%	0.6%	-	1.73	1.37	1.7 ± 0.2	
	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	1.27	22.1 ± 0.5	
- e	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	1.39	94.3 ± 1.0	
19.6	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	1.54	570.5 ± 2.6	
V 1	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	2.14	1060.9 ± 3.5	
TeV	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	1.50	3.4 ± 0.2	
8	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	1.60	12.4 ± 0.4	
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	1.52	0.7 ± 0.1	
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	1.54	0.7 ± 0.1	
	E ^{miss} tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	1.64	1.8 ± 0.1	


Most of the data (~72 %) irreducible background from two prompt photons To describe background polinomials from 2th to 5th order were used

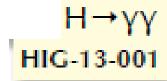
Mass fit MVA-analysis

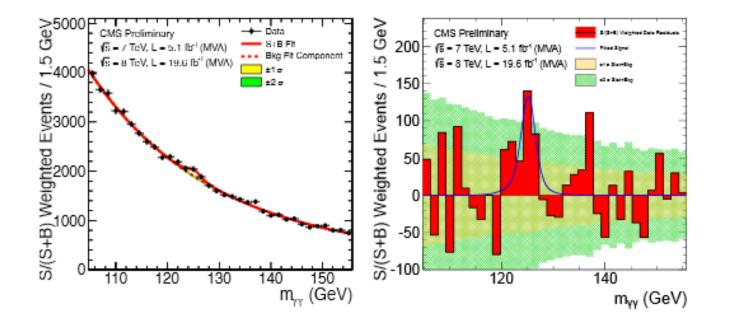



Best fit σ/σ_{SM} distribution vs MH

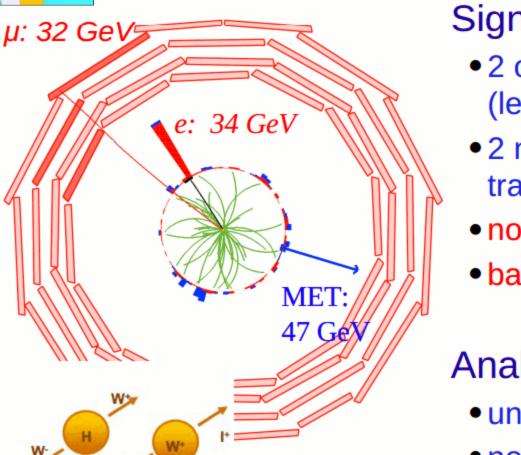
Best fit $\sigma/\sigma_{SM} = 0.78 + 0.27$

Η----> γγ




Local significance 3.2 σ (expected 3.7 σ)

Mass fit MVA-analysis



Final two-photon invariant mass presented after weighting signal-background ratio for each event class

M= 125.2±0.5(stat.)±0.6(syst.)

$H \rightarrow WW \rightarrow 2l 2nu$

Higgs is scalar leptons are close

Signature

 2 opposite charged leptons (leptons only *e*, μ)

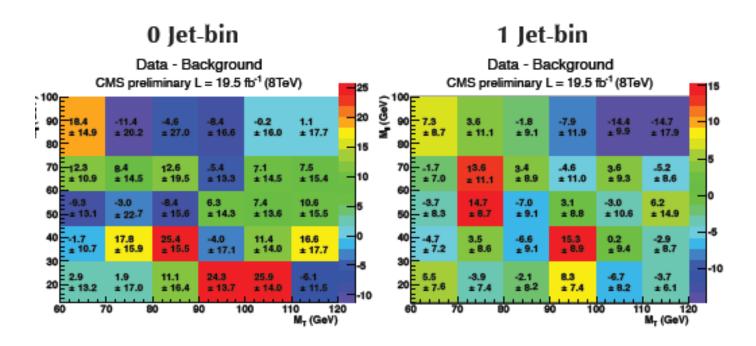
H→WW

HIG-13-003

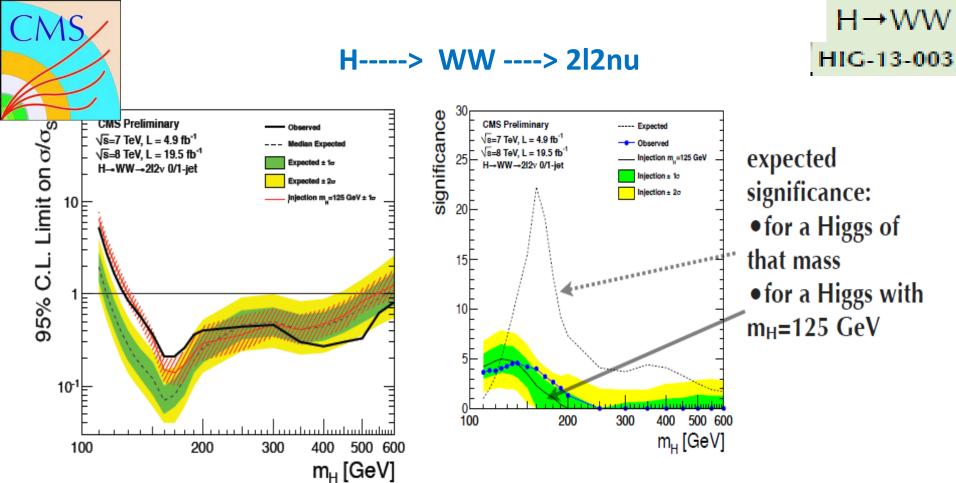
- 2 neutrinos == missing transverse energy (MET)
- no Higgs mass peak
- basically a counting analysis

Analysis challenges

- understand backgrounds
- normalize to control regions
- backgrounds: WW, W+jets, top, DY


Shape – 2 Dimensions
$$(m_{\parallel} - m_{\tau})$$

mT = $\sqrt{2p_{T}^{\ell\ell}E_{T}^{miss}(1 - \cos\Delta\phi_{E_{T}^{miss}\ell\ell})}$

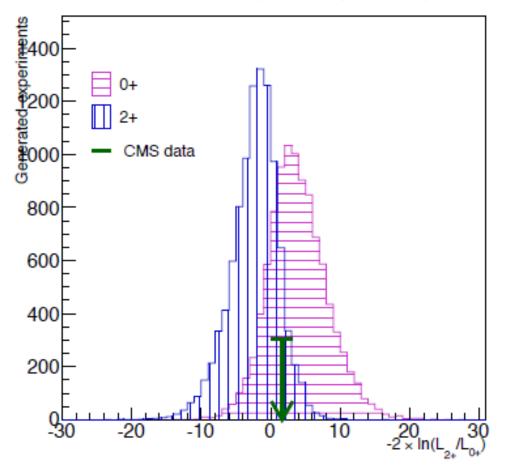

H→WW HIG-13-003

2D-shape analysis allows to separate background in two dimensions

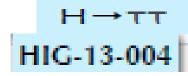
Improve analysis sensitivity

Evaluating systematic uncertainty adjusted (in 2D)

Mass range from 128 to 600 GeV is excluded at 95 % CL


Shape-based analysis Significance 4.0 σ (expected 5.1 σ) Strength μ = 0.76 ± 0.21 Cut-based analysis Significance 2.0 σ (expected 2.7 σ) Strength μ =0.71 ± 0.37

H→WW HIG-13-003


H----> WW ----> 2l2v Spin and parity determination

CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L = 4.9 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19.5 \text{ fb}^{-1}$

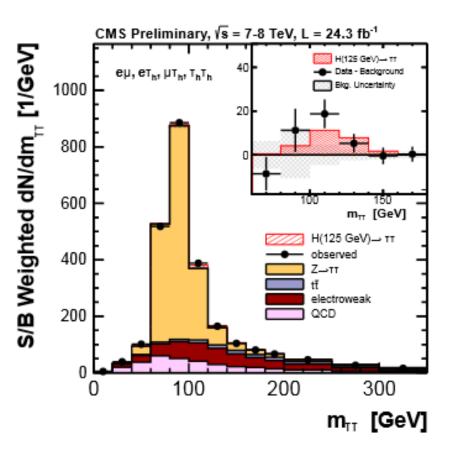
2+ is disfavored with CLs 14 %

Η----> ττ

Final states eμ μμ eth μth thth (th - hadron decays of lepton)

Two sub-category 1- two backward and forward jets - mostly VBF 2 - at least one high-pt hadronic jet

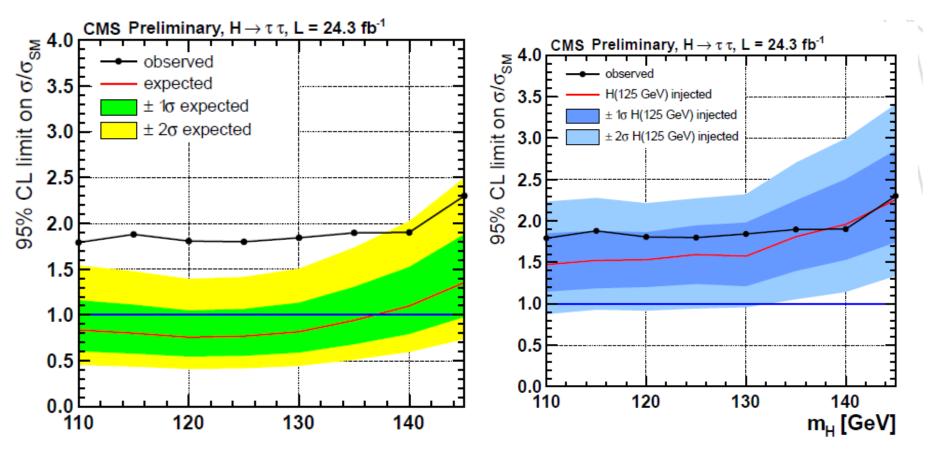
Zero jet events are used to constrain background normalization, identification efficiency and energy scan


Backgrounds (Z->ττ (irreducible) and reducible(W+jets, multijet productions, Z->ee) are estimated for control data samples

H->ττ in association with W or Z was also studied (the same τ-lepton final states and decays of W and Z to leptons)

Combined Mττ distribution weighted by S/B -ratio

Background contribution mostly were determined from data (EW – shape and ttbar from MC) Systematics background estimation -~ 10 % (Z-> $\mu\mu$ – 5%)

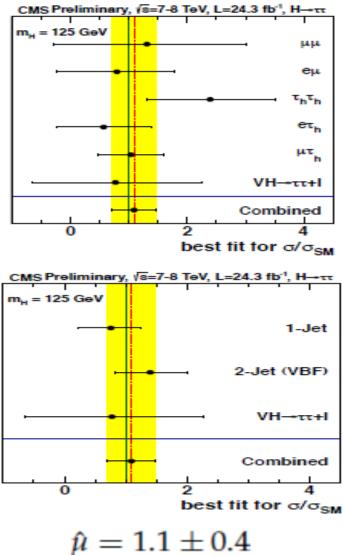


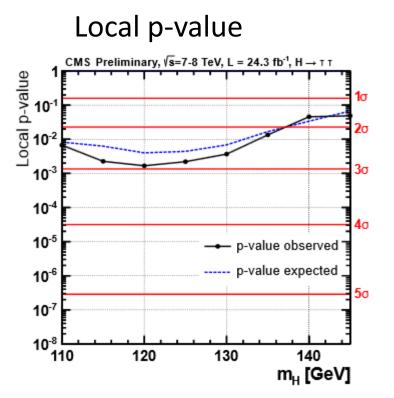
Η----> ττ

н→тт HIG-13-004

Without Higgs boson contribution

With contribution of Higgs M=125 GeV





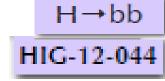
H----> tau tau

Η→ττ HIG-13-004

Compatability with SM Higgs

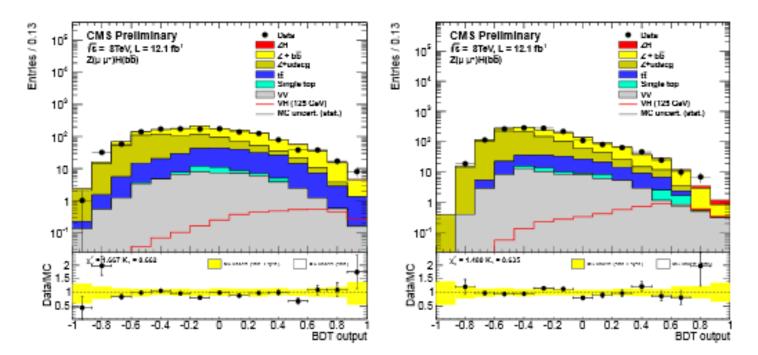
Significance 2.8 observed (2.6 expected)

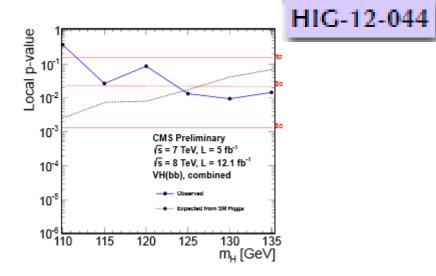
H→bb


- Mostly Higgs in association W and Z (W-> $ev/\mu v$, Z-> $ee/\mu \mu/vv$)
- Two b-tagged jets are reconstructed
- MVA is applied

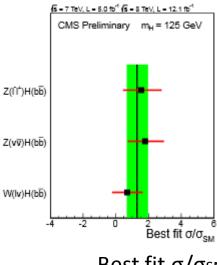
 Background from WZ and ZZ with Z decaying to two b-quark, as well as background from single top-production were estimated from MC

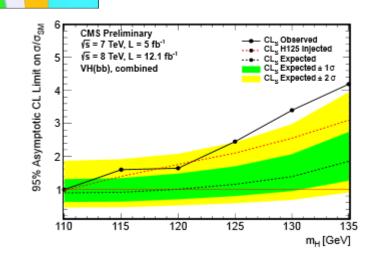
 H-> bb in association with top-quark pair was also studied (less sensitive)


HZ -> bb Z


BDT distribution for HZ (Ζ->μμ)

Low pt Z-boson


High pt Z-boson


H→bb

Significance 2.0 σ (expected 2.2 σ)

H->bb

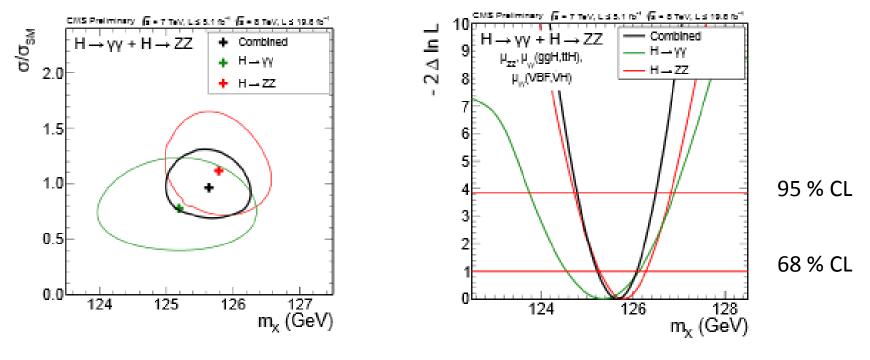
$m_{\rm H}({\rm GeV})$	110	115	120	125	130	135
Exp.	0.89	0.91	1.00	1.15	1.39	1.85
Obs.	0.99	1.60	1.64	2.45	3.40	4.19

Best fit σ/σsм

Combination

combination HIG-13-005

high resolution channels


		Analyses	No. of	m _H	Lumi	(fb ⁻¹)
H decay	Prod. tag	Exclusive final states	channels	resolution	7 TeV	8 TeV
	untagged	$\gamma\gamma$ (4 diphoton classes)	4+4	1-2%	5.1	19.6
$\gamma\gamma$	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (two dijet classes for 8 TeV)	1+2	<1.5%	5.1	19.6
	VH-tag	$\gamma\gamma + (e, \mu, MET)$	3	<1.5%		19.6
$ZZ \rightarrow 4\ell$	$N_{\rm jet} < 2$	4e , 4 μ, 2 <i>e</i> 2μ	3+3	1-2%	5.1	19.6
$LL \rightarrow 4t$	$\dot{N_{jet}} \ge 2$	4c, 4µ, 2c2µ	3+3	1-270	5.1	19.0
	0/1-jets	(DF or SF dileptons) × (0 or 1 jets)	4+4	20%	4.9	19.5
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1+2	20%	4.9	12.1
	WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)	2+2		4.9	19.5
	0/1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (low or high p_T^{T})$	16 + 16			
	1-jet	$\tau_h \tau_h$	1+1	15%	4.9	19.6
ττ	VBF-tag	$(e\tau_{lt}, \mu\tau_{lt}, e\mu, \mu\mu, \tau_{lt}\tau_{l}) + (jj)_{VBF}$	5+5			
	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu\tau_h, e\mu)$	8+8		5.0	19.5
	WH-tag	$\eta_t \mu \mu$, $\eta_t e \mu$, $e \eta_t \eta_t$, $\mu \eta_t \eta_t$	4 + 4		5.0	19.5
	VH-tag	($\nu\nu$, ee, $\mu\mu$, ev, $\mu\nu$ with 2 b-jets)× (low or high $p_{\rm T}(V)$ or loose b-tag)	10 + 13	10%	5.0	12.1
bb	ttH-tag	(ℓ with 4, 5 or \geq 6 jets) × (3 or \geq 4 b-tags);	6+6		5.0	5.1
	urr-ug	(ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-tagged jets)	3+3		0.0	0.1

Decay mode	Expected (σ)	Observed (σ)
ZZ	7.1	6.7
$\gamma\gamma$	3.9	3.2
WW	5.3	3.9
bb	2.2	2.0
ττ	2.6	2.8

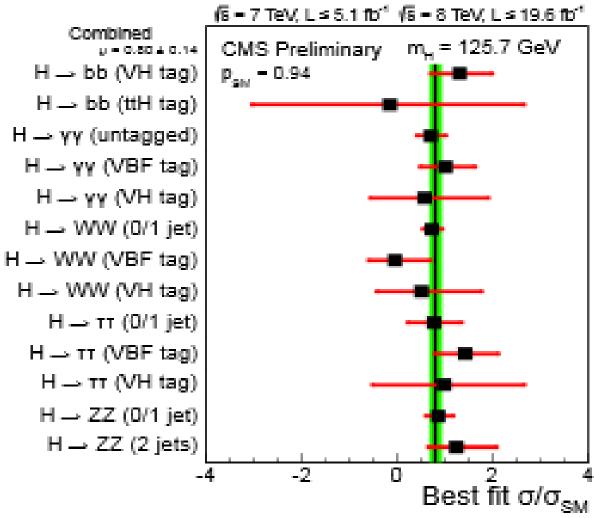
mass measurement and compatibility tests for several properties

Combined mass measurement (H->yy + H-> ZZ)

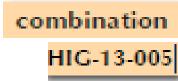
68 % CL contours are shown

M = 125.7 ± 0.3 (stat.) ± 0.3 (syst.)

combination

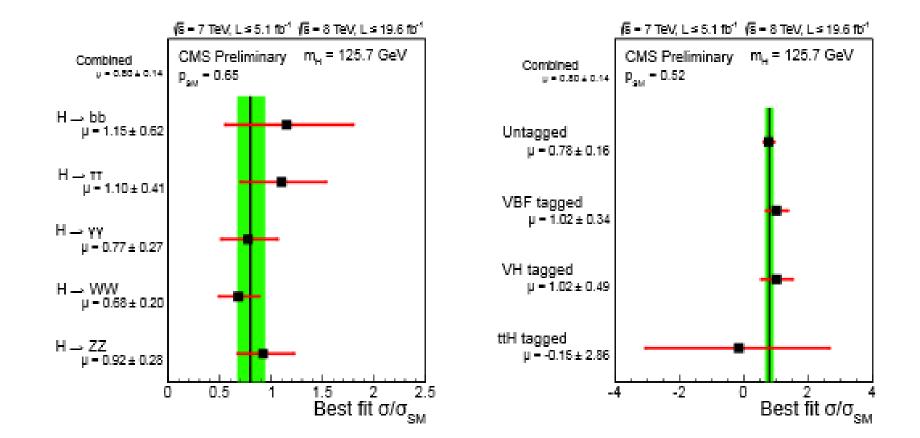

HIG-13-005

Signal strength

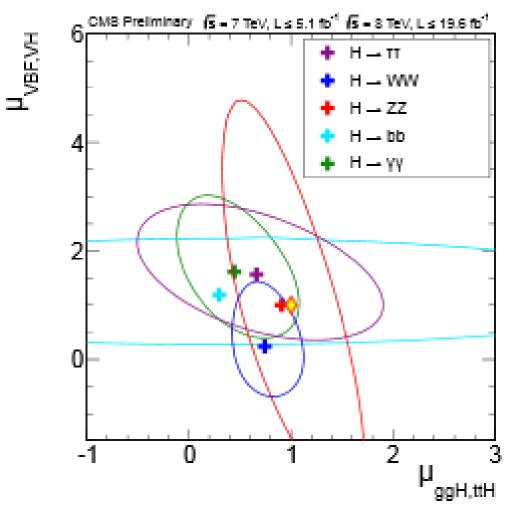

combination

HIG-13-005

Combined signal strength μ =0.80 ± 0.14

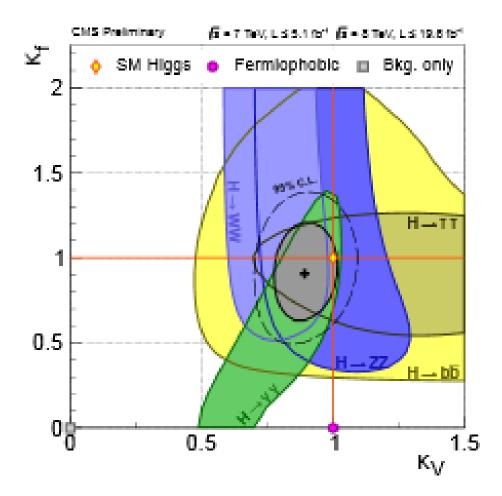


Signal strength


For different decay channels

For different production mechanisms

Signal strength for gluon-gluon-fusion-plus- ttH vs VBF-plus-VH production mechanisms



68 % CL contours are shown around the best fit-values

Orange diamond at (1,1)- expected for SM Higgs boson

Coupling to fermions vs coupling to bosons

SM Higgs boson expectations (1,1) are within 68 % contour of combined data

Conclusions

- -The new particle with the mass 125.7+-0.3+-0.3 GeV was observed
- Total significance more than 9 sigma (6.7 sigma in H->ZZ)
- No discrepancy from SM Higgs observed
- First indication on decay to fermions is obtained
- Further improvements are expecting