

The Art and Science of Planning for the International Linear Collider

Barry Barish Caltech CERN Colloquium 13-Nov-07

Exploring the Terascale the tools

- LHC
 - It will lead the way and has large reach
 - Quark-quark, quark-gluon and gluon-gluon collisions at 0.5 - 5 TeV
 - Broadband initial state
- Lepton Collider
 - A second view with high precision
 - $-\ell^+\ell^-$ collisions with fixed energies, adjustable between
 - 0.1 and 1.0 TeV (or higher??)
 - Well defined initial state
- Together, these are our tools for the terascale

Electron-Positron Colliders

Bruno Touschek built the first successful electron-positron collider at Frascati, Italy (1960)

Eventually, went up to 3 GeV

But, not quite high enough energy

Burt Richter Nobel Prize

13-Nov-07 CERN Colloquium **The International Linear Collider**

The rich history for e⁺e⁻ continued as higher energies were achieved ...

And also at LEP, where the stage has been set for the terascale

What causes mass??

The mechanism – Higgs or alternative appears around the corner

Three Generations of Lepton Colliders *The Energy Frontier*

Why a Lepton Collider?

- elementary particles
- well-defined
 - energy,
 - angular momentum
- uses full COM energy
- produces particles democratically
- can mostly fully reconstruct events

Possible TeV Scale Lepton Colliders

Strategies toward TeV Scale Lepton Collider

- Assuming LHC reveals the new physics we all anticipate,
 - We will want complementary lepton collider for precision measurements
- Time scales dictate vigorously investing toward that goal now
 - If LHC physics justifies a < 1 TeV machine, ILC can be ready to build as the next big HEP machine
 - If LHC physics demands a > 1 TeV machine, CLIC may be the answer with a longer time scale, depending on "feasibility"
 - The alternative muon collider is also a long term possibility, if "FEASIBLE"

LHC: Low mass Higgs: $H \rightarrow \gamma \gamma$ $M_H < 150 \ GeV/c^2$

- Rare decay channel: BR ~ 10⁻³
- Requires excellent electromagnetic calorimeter performance
 - acceptance, energy and angle resolution,
 - γ /jet and γ/π^0 separation
 - Motivation for LAr/PbWO₄ calorimeters for CMS
- Resolution at 100 GeV: $\sigma \approx 1$ GeV
- Background large: S/B ≈ 1:20, but can estimate from non signal areas

ILC: Precision Higgs physics

Model-independent Studies

- mass
- absolute branching ratios
- total width
- spin
- top Yukawa coupling
- self coupling

Precision Measurements

How do you know you have discovered the Higgs ?

Measure the quantum numbers. The Higgs must have spin zero !

The linear collider will measure the spin of any Higgs it can produce by measuring the energy dependence from threshold

What can we learn from the Higgs?

Precision measurements of Higgs coupling

Higgs Coupling strength is proportional to Mass

13-Nov-07 CERN Colloquium **The International Linear Collider**

e⁺e⁻: Studying the Higgs *determine the underlying model*

Yamashita et al

Zivkovic et al

Top Quark Measurements

Threshold scan provides mass measurement

Theory (NNLL) controls m_t(MS) to 100 MeV

Top Quark Measurements

Bounds on axial ttbarZ and left handed tbW for LHC and ILC compared to deviations in various models

Supersymmetry

- Measure quantum numbers

- Is it MSSM, NMSSM, ...?

- How is it broken?

ILC can answer these questions!

tunable energy

polarized beams

Supersymmetry

Two methods to obtain absolute sparticle masses:

Kinematic Threshold:

In the continuum

Determine SUSY parameters without model assumptions Minimum and maximum determines masses of primary slepton and secondary neutralino/chargino

Supersymmetry quark and lepton unification

Predicted in most modelsCan be tested at the ILC

New space-time dimensions can be mapped by studying the emission of gravitons into the extra dimensions, together with a photon or jets emitted into the normal dimensions.

Direct production from extra dimensions ?

Why Linear?

- Circular Machine
- ΔE ~ (E⁴/m⁴ R)
- Cost ~ a R + b ∆E

~ a R + b (E⁴/m⁴ R)

- Optimization : $R \sim E^2 \Rightarrow Cost \sim c E^2$

How the physics defines the ILC

International Committee for Future Accelerators

Sponsored by the Particles and Fields Commission of IUPAP

Parameters for the Linear Collider

September 30, 2003

13-Nov-07 CERN Colloquium **The International Linear Collider**

Parameters for the ILC

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

The machine must be upgradeable to 1 TeV

ILC – Underlying Technology

Room temperature
 copper structures

OR

Superconducting RF cavities

SCRF Technology Recommendation

- The recommendation of ITRP was presented to ILCSC & ICFA on August 19, 2004 in a joint meeting in Beijing.
- ICFA unanimously endorsed the ITRP's recommendation on August 20, 2004

Superconducting RF Technology

- Forward looking technology for the next generation of particle accelerators: particle physics; nuclear physics; materials; medicine
- The ILC R&D is leading the way for Superconducting RF technology
 - high gradients; low noise; precision optics

Designing a Linear Collider

Luminosity & Beam Size

$$L = \frac{n_b N^2 f_{rep}}{2\pi\sigma_x \sigma_y} H_D$$

f_{rep} * n_b tends to be low in a linear collider

	L	f _{rep} [Hz]	n _b	N [10 ¹⁰]	σ _x [μm]	σ у [μm]
ILC	2x10 ³⁴	5	3000	2	0.5	0.005
SLC	2x10 ³⁰	120	1	4	1.5	0.5
LEP2	5x10 ³¹	10,000	8	30	240	4
PEP-II	1x10 ³⁴	140,000	1700	6	155	4

Achieve luminosity with spot size and bunch charge

Achieving High Luminosity

- Low emittance machine optics
- Contain emittance growth
- Squeeze the beam as small as possible

ILC Reference Design

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector
 - Circular damping rings for electrons and positrons
 - Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

~31 Km

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

RDR Cost Estimating

- "Value" Costing System: International costing for International Project
 - Provides basic agreed to "value" costs
 - Provides estimate of "explicit" labor (man-hr)]
- Based on a call for world-wide tender: lowest reasonable price for required quality
- Classes of items in cost estimate:
 - Site-Specific: separate estimate for each sample site
 - Conventional: global capability (single world est.)
 - High Tech: cavities, cryomodules (regional estimates)

Evolving Design \rightarrow Cost Reductions

CERN Colloquium

The International Linear Collider

RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

The value costs have already been reviewed three time

3 day "internal review" in Dec
ILCSC MAC review in Jan
International Cost Review (May)
Σ Value = 6.62 B ILC Units

Summary RDR "Value" Costs

Total Value Cost (FY07) 4.80 B ILC Units Shared + 1.82 B Units Site Specific + 14.1 K person-years ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr) 1 ILC Unit = \$ 1 (2007)

Assessing the RDR

- Reviews (5 major international reviews + regional)
 - The Design: "The MAC applauds that considerable evolution of the design was achieved ... the performance driven baseline configuration was successfully converted into a cost conscious design."
 - The R&D Plan: "The committee endorses the approach of collecting R&D items as proposed by the collaborators, categorizing them, prioritizing them, and seeking contact with funding agencies to provide guidelines for funding.
 - International Cost Review (Orsay): Supported the costing methodology; considered the costing conservative in that they identify opportunities for cost savings; etc.

Final Step

- The final versions of Executive Summary, Reference Design Report and Companion Document were submitted to FALC (July), ILCSC and ICFA (August).
- The Reference Design is now official

RDR Complete

• Reference Design Report (4 volumes)

Executive Summary

Physics at the ILC

Accelerator

Detectors

Two tunnels

- accelerator units
- other for services RF power

onal Linear Collider

Conventional Facilities

72.5 km tunnels ~ 100-150 meters underground

13 major shafts > 9 meter diameter

443 K cu. m. underground excavation: caverns, alcoves, halls

92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft

Americas Fermilab Sample Site

Situation : in solid rock, close to existing institute, close to the city of Chicago and international airport, close to railway and highway networks.

Geology : Glacially derived deposits overlaying Bedrock. The concerned rock layers are from top to bottom the Silurian dolomite, Maquoketa dolomitic shale, and the Galena-Platteville dolomites.

Depth of main tunnels : Average ~ 135 m

13-Nov-07 CERN Colloquium **The International Linear Collider**

Preconstruction Plan for Fermilab

Superconducting RF Cryomodule

ILC Reference Design and Plan

Producing Cavities

Obtaining Gradient

ILC Reference Design and Plan

Technically Driven Timeline

Civil Construction Timeline

On-surface Detector Assembly CMS approach

13-Nov-07 CERN Colloquium The International Linear Collider

Cavity Gradient – Goal

- Current status: Nine 9 cell cavities have been produced with gradients > 35 MeV/m. Not reproducible and needs several attempts at final processing.
- Goal: After a viable cavity process has been determined through a series of preparations and vertical tests on a significant number of cavities, achieve 35 MV/m at Q₀ = 10¹⁰ in a sufficiently large final sample (greater than 30) of nine-cell cavities in the low power vertical dewar testing in a productionlike operation e.g. all cavities get the same treatment.
 - The yield for the number of successful cavities of the final production batch should be larger than 80% in the first test. After re-processing the 20 % underperforming cavities the yield should go up to 95%. This is consistent with the assumption in the RDR costing exercise.

Cavity Gradient - Results

60

Module Test - Goal

- Intermediate goal
 - Achieve 31.5 MV/m average operational accelerating gradient in a single cryomodule as a proof-of-principle. In case of cavities performing below the average, this could be achieved by tweaking the RF distribution accordingly.
 - Auxiliary systems like fast tuners should all work.
- Final goal
 - Achieve > 31.5 MeV/m operational gradient in 3 cryomodules.
 - The cavities accepted in the low power test should achieve 35 MV/m at $Q_0 = 10^{10}$ with a yield as described above (80% after first test, 95% after re-preparation).
 - It does not need to be the final cryomodule design

Electron cloud - Goal

- Ensure the e- cloud won't blow up the e+ beam emittance.
 - Do simulations (cheap)
 - Test vacuum pipe coatings, grooved chambers, and clearing electrodes effect on ecloud buildup
 - Do above in ILC style wigglers with low emittance beam to minimize the extrapolation to the ILC.

CERN Colloquium

Detector Concepts Report

Detector Performance Goals

e.g: The Higgs tagging mode

 $e^+e^- \to ZH, \quad Z \to \ell^+\ell^-$

13-Nov-07 CERN Colloquium **The International Linear Collider**

Detector Performance Goals

13-Nov-07 CERN Colloquium **The International Linear Collider**

Detector Performance Goals

- ILC detector performance requirements and comparison to the LHC ۲ detectors:
 - Inner vertex layer ~ 3-6 times closer to IP
 - Vertex pixel size ~ 30 times smaller
 - Vertex detector layer ~ 30 times thinner

Impact param resolution $\Delta d = 5 \, [\mu m] \oplus 10 \, [\mu m] / (p[GeV] \sin 3/2\theta)$

- Material in the tracker ~ 30 times less Track momentum resolution ~ 10 times better **Momentum resolution** $\Delta p / p^2 = 5 \times 10^{-5}$ [GeV⁻¹] central region $\Delta p / p^2 = 3 \times 10^{-5}$ [GeV⁻¹] forward region
- Granularity of EM calorimeter ~ 200 times better Jet energy resolution $\Delta E_{jet} / E_{jet} = 0.3 / \sqrt{E_{jet}}$ Forward Hermeticity down to θ = 5-10 [mrad]

Final Reflections

- We have come a long way, and the connecting theme has been a strong physics case, coupled with the development of a coherent concept for the accelerator and the R&D technology demonstrations
- This provides a strong base for the future, but there are many hurdles ahead: costs, LHC results, international management, determining a host and site, funding.
- Many elements should converge early in the next decade and our aim is to be ready with the strongest construction proposal possible on that time scale.