
HASCO SUMMER SCHOOL 2013
Bayesian Inference in Processing Experimental

Data Principles and Basic Applications
arXiv:physics/0304102v1 [physics.data-an] 28 Apr 2003

Author: G. D’Agostini Presented by:

Federica Fabbri
 Marco Fiore

Outline
• Bayesian Inference;
• Computational issues;
• Sampling;
• Markov Chain Monte Carlo (MCMC);
• Conclusions;
• Q & A (or not)

Introduction
The subjective nature of probability (“…a quantitative
measure of the strength of our conjecture or anticipation,
founded on the said knowledge, that the event comes true”
E. Schroedinger) is well represented by:

P(H j | Ei, I) =
P(Ei |H j, I)P(H j | I)
P(Ei |H j, I)P(H j | I)j!

Bayes’ Theorem

Introduction
The subjective nature of probability (“…a quantitative
measure of the strength of our conjecture or anticipation,
founded on the said knowledge, that the event comes true”
E. Schroedinger) is well represented by:

Everything we do is based on what we know about the
world.

P(H j | Ei, I) =
P(Ei |H j, I)P(H j | I)
P(Ei |H j, I)P(H j | I)j!

Bayes’ Theorem

P(! | d, I) = P(d |!, I)P(! | I)
P(d |!, I)P(! | I)! d!

Computational issues 1
The application of Bayesian ideas leads to computational
problems, mostly related to the calculation of integrals for:

Computational issues 1
The application of Bayesian ideas leads to computational
problems, mostly related to the calculation of integrals for:

Normalization

p(x)dx =1!

Computational issues 1
The application of Bayesian ideas leads to computational
problems, mostly related to the calculation of integrals for:

Normalization

Expectation value of f(X)

p(x)dx =1!

E[f (X)]= f (x)p(x)dx!

Computational issues 1
The application of Bayesian ideas leads to computational
problems, mostly related to the calculation of integrals for:

Normalization

Expectation value of f(X)

Marginalization

p(x)dx =1!

E[f (X)]= f (x)p(x)dx!

p(x, y)dy! = p(x)

Computational issues 2
If we were able to sample the posterior, i.e. to generate
points of the parameter space according to their probability,
the problem would have been solved, at least
approximately.

E[f (x)]= ...
x1

! f (x1,..., xn)p(x1,..., xn)
xn

! = f (xi)p(xi)
i
!

Computational issues 2
The average can then be calculated with

For simple distributions (Gaussian, Poisson, Breit-Wigner)
there are well-known standard techniques for generating
pseudorandom numbers starting from numbers distributed
uniformly between 0 and 1.

f (x)

f (x) = 1
N

f (xt)
t
!

Sampling 1
If the distribution p(x) you use to sample is complicated,
you need a different approach:

Sampling 1
If the distribution p(x) you use to sample is complicated,
you need a different approach:

Rejection sampling: We generate xgen according to some
function q(x), such that, given a constant c, p(x)≤cq(x) and
decide to accept it with probability p(xgen)/cq(xgen).

Sampling 2
Importance sampling : even without requirements on the
g(x) function, apart from the condition that g(xi) must be
positive wherever p(xi) is positive, we can still use it to
calculate E[f(x)]:

In this case the sampling produces weighted events.

E[f (x)] !
f (xt) p

~
(xt)

t
" / g(xt)

p
~
(xt)

t
" / g(xt)

Sampling: MCMC
A different class of Monte Carlo methods is based on
Markov Chains: the sequence of generated points takes a
kind of random walk in parameter space, instead of each
point being generated one independently from another.

Sampling: MCMC
A different class of Monte Carlo methods is based on
Markov Chains: the sequence of generated points takes a
kind of random walk in parameter space, instead of each
point being generated one independently from another.

The probability of jumping
from one point to an other
depends only on the last
point and not on the entire
previous history.

Metropolis algorithm
One of the most popular and simple algorithms, based on
MCMC;
Start from an arbitrary point x0 and generate the sequence
by repeating the following cycle:
1.  Select a new trial point x* chosen according to a

symmetric proposal pdf q(x*|xt)
2.  Calculate the acceptance probability

A(x* | xt) =min[1,
p
~
(x*)

p
~
(xt)

]

Metropolis algorithm
One of the most popular and simple algorithms, based on
MCMC;
Start from an arbitrary point x0 and generate the sequence
by repeating the following cycle:
1.  Select a new trial point x* chosen according to a

symmetric proposal pdf q(x*|xt)
2.  Calculate the acceptance probability;
3.  Accept x* with probability A(xt,x*), i.e.

u If , then accept x*;

u If , accept x* if a number, extracted randomly
between 0 and 1, is less than

If the point is accepted, then xt+1 = x*. Otherwise, xt+1 = xt

jgu

p
~
(x*) ! p

~
(xt)

p
~
(x*) < p

~
(xt)

p
~
(x*) / p

~
(xt)

Examples

-10 -5 0 5 100

200

400

600

800

1000

Metropolis_Monte_CarloMetropolis_Monte_Carlo

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

fivegaus(x)fivegaus(x)

-10 -5 0 5 100

100

200

300

400

500

Rejection samplingRejection sampling

-10 -5 0 5 100

200

400

600

800

1000

MetropolisMetropolis

εg(x)[Metropolis] = 0.416264

εg(x)[rejection] = 0.249386

p(x)

Problems
• Each point in the chain has some correlation with the

points which immediately preceded it, and usually the
chain moves slowly from one region in the variable space
to another and it can happen several times that xt+1 = xt ;

• The initial part of the sequence is strongly influenced by
the arbitrary starting point. Therefore, it is necessary to
remove the initial part of the chain.

• One of the important things to choose with care is the
proposal function. If too small jumps are proposed, the
chain can even remain trapped in a subregion; if the
jumps are too large, the chain remains stuck in a point for
many cycles.

Problems

One of the important things to choose with care is the
proposal function. If too small jumps are proposed, the
chain can even remain trapped in a subregion; if the jumps
are too large, the chain remains stuck in a point for many
cycles.

-10 -5 0 5 100

100

200

300

400

500

Rejection samplingRejection sampling

-10 -5 0 5 100

200

400

600

800

1000

MetropolisMetropolis

εg(x)[Metropolis] = 0.191088

Conclusions
• The Bayesian approach can be applied to many physical

problems (even n-dimensional);
• Providing an exact solution for inferential problems can

easily lead to computational difficulties;
• Monte Carlo methods allow to overcome issues in the

analysis;
• Metropolis algorithm, based on Markov Chains, gives

more accurate (and efficient) results then, for instance,
the rejection sampling. Also easy to implement.

• …the end?

Simulated Annealing
•  For certain problems, simulated annealing (heating and controlled

cooling of a material to increase the size of its crystals and reduce
their defects) may be more efficient than exhaustive enumeration,
provided that the goal is merely to find an acceptably good
solution in a fixed amount of time, rather than the best possible
solution.

•  Like a decrease in the thermodynamic free energy, in the SA
algorithm there is a decrease in the probability of accepting worse
solutionsàmore extensive search for the optimal solution.

•  Gradual reduction of the pseudotemperature T as the simulation
proceeds: the algorithm starts initially with T set to a high value (or
infinity), and then it is decreased at each step following some
annealing schedule - which may be specified by the user, but must
end with T = 0.

LA TOMBA DI GAUSS

