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Introduction 
The subjective nature of probability (“…a quantitative 
measure of the strength of our conjecture or anticipation, 
founded on the said knowledge, that the event comes true” 
E. Schroedinger) is well represented by: 

P(H j | Ei, I ) =
P(Ei |H j, I )P(H j | I )
P(Ei |H j, I )P(H j | I )j!

Bayes’ Theorem 



Introduction 
The subjective nature of probability (“…a quantitative 
measure of the strength of our conjecture or anticipation, 
founded on the said knowledge, that the event comes true” 
E. Schroedinger) is well represented by: 

 

Everything we do is based on what we know about the 
world. 

P(H j | Ei, I ) =
P(Ei |H j, I )P(H j | I )
P(Ei |H j, I )P(H j | I )j!

Bayes’ Theorem 

P(! | d, I ) = P(d |!, I )P(! | I )
P(d |!, I )P(! | I )! d!
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Computational issues 1 
The application of Bayesian ideas leads to computational 
problems, mostly related to the calculation of integrals for: 
 
Normalization  
 
 
Expectation value of f(X)      
 
 
Marginalization 
 

p(x)dx =1!

E[ f (X)]= f (x)p(x)dx!

p(x, y)dy! = p(x)



Computational issues 2 
If we were able to sample the posterior, i.e. to generate 
points of the parameter space according to their probability, 
the problem would have been solved, at least 
approximately. 
 
 
 
 

E[ f (x)]= ...
x1

! f (x1,..., xn )p(x1,..., xn )
xn

! = f (xi )p(xi )
i
!



Computational issues 2 
The average            can then be calculated with 
 
 
 
 
For simple distributions (Gaussian, Poisson, Breit-Wigner) 
there are well-known standard techniques for generating 
pseudorandom numbers starting from numbers distributed 
uniformly between 0 and 1. 

f (x)

f (x) = 1
N

f (xt )
t
!



Sampling 1   
If the distribution p(x) you use to sample is complicated, 
you need a different approach: 



Sampling 1   
If the distribution p(x) you use to sample is complicated, 
you need a different approach: 
 
Rejection sampling: We generate xgen according to some 
function q(x), such that, given a constant c, p(x)≤cq(x) and 
decide to accept it with probability p(xgen)/cq(xgen). 



Sampling 2 
Importance sampling : even without requirements on the  
g(x) function, apart from the condition that g(xi) must be 
positive wherever p(xi) is positive, we can still use it to 
calculate E[f(x)]: 
 
 
 
 
 
 
In this case the sampling produces weighted events. 
 
 

E[ f (x)] !
f (xt ) p

~
(xt )

t
" / g(xt )

p
~
(xt )

t
" / g(xt )



Sampling: MCMC 
A different class of Monte Carlo methods is based on 
Markov Chains: the sequence of generated points takes a 
kind of random walk in parameter space, instead of each 
point being generated one independently from another. 

 



Sampling: MCMC 
A different class of Monte Carlo methods is based on 
Markov Chains: the sequence of generated points takes a 
kind of random walk in parameter space, instead of each 
point being generated one independently from another. 

The probability of jumping 
from one point to an other 
depends only on the last 
point and not on the entire 
previous history. 
 



Metropolis algorithm 
One of the most popular and simple algorithms, based on 
MCMC; 
Start from an arbitrary point x0 and generate the sequence 
by repeating the following cycle: 
1.  Select a new trial point x* chosen according to a 

symmetric proposal pdf q(x*|xt) 
2.  Calculate the acceptance probability 

A(x* | xt ) =min[1,
p
~
(x*)

p
~
(xt )

]



Metropolis algorithm 
One of the most popular and simple algorithms, based on 
MCMC; 
Start from an arbitrary point x0 and generate the sequence 
by repeating the following cycle: 
1.  Select a new trial point x* chosen according to a 

symmetric proposal pdf q(x*|xt) 
2.  Calculate the acceptance probability; 
3.  Accept x* with probability A(xt,x*), i.e. 

u If                       , then accept x*; 

u If                        , accept x* if a number, extracted randomly 
between 0 and 1, is less than   

If the point is accepted, then xt+1 = x*. Otherwise, xt+1 = xt  

jgu 
 

p
~
(x*) ! p

~
(xt )

p
~
(x*) < p

~
(xt )

p
~
(x*) / p

~
(xt )



Examples 
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εg(x)[Metropolis] = 0.416264 

εg(x)[rejection] = 0.249386 

p(x) 



Problems 
• Each point in the chain has some correlation with the 

points which immediately preceded it, and usually the 
chain moves slowly from one region in the variable space 
to another and it can happen several times that  xt+1 = xt ; 

• The initial part of the sequence is strongly influenced by 
the arbitrary starting point. Therefore, it is necessary to 
remove the initial part of the chain. 

• One of the important things to choose with care is the 
proposal function. If too small jumps are proposed, the 
chain can even remain trapped in a subregion; if the 
jumps are too large, the chain remains stuck in a point for 
many cycles. 



Problems 
 
 
 
 
 
 
 
One of the important things to choose with care is the 
proposal function. If too small jumps are proposed, the 
chain can even remain trapped in a subregion; if the jumps 
are too large, the chain remains stuck in a point for many 
cycles. 
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εg(x)[Metropolis] = 0.191088 



Conclusions 
• The Bayesian approach can be applied to many physical 

problems (even n-dimensional); 
• Providing an exact solution for inferential problems can 

easily lead to computational difficulties; 
• Monte Carlo methods allow to overcome issues in the 

analysis; 
• Metropolis algorithm, based on Markov Chains, gives 

more accurate (and efficient) results then, for instance, 
the rejection sampling. Also easy to implement. 

• …the end? 



Simulated Annealing 
•  For certain problems, simulated annealing (heating and controlled 

cooling of a material to increase the size of its crystals and reduce 
their defects) may be more efficient than exhaustive enumeration, 
provided that the goal is merely to find an acceptably good 
solution in a fixed amount of time, rather than the best possible 
solution. 

•  Like a decrease in the thermodynamic free energy, in the SA 
algorithm there is a decrease in the probability of accepting worse 
solutionsàmore extensive search for the optimal solution. 

•  Gradual reduction of the pseudotemperature T as the simulation 
proceeds: the algorithm starts initially with T set to a high value (or 
infinity), and then it is decreased at each step following some 
annealing schedule - which may be specified by the user, but must 
end with T = 0. 
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