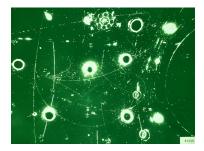
Discovery of neutral currents in ν interactions in Gargamelle

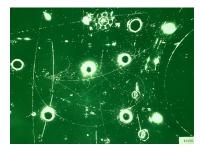
Giulia De Rosi & Laura Dieringer

HASCO Summer School 2013, Göttingen


Wednesday, 17 July 2013

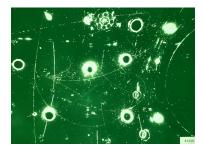
How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

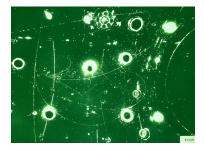
How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

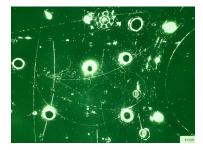
How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

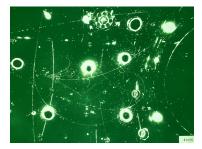
How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

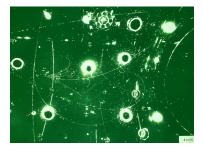
How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.


If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

How a bubble chamber works?

A bubble chamber is a metal cylinder filled with a heated, near to boiling liquid in a metastable state.

If a charged particle crosses the bubble chamber, it ionizes locally the atoms of the liquids \rightarrow local bubbles along the particle track. An uniform magnetic field in the chamber \rightarrow particle bent \rightarrow from its curvature radius \rightarrow its momentum.

Introduction

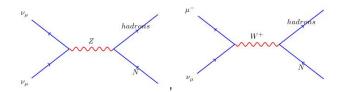
 Experimental observation of neutral weak current whose mediator is the neutral massive boson Z, through neutrino interactions without muon or electron in the final state → a confirmation of unified EW theory;

→ Ξ → < Ξ</p>

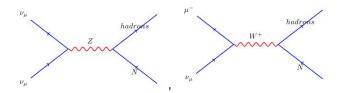
Introduction

 Experimental observation of neutral weak current whose mediator is the neutral massive boson Z, through neutrino interactions without muon or electron in the final state → a confirmation of unified EW theory;

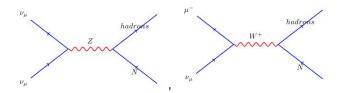
→ Ξ → < Ξ</p>

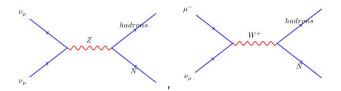

Introduction

 Experimental observation of neutral weak current whose mediator is the neutral massive boson Z, through neutrino interactions without muon or electron in the final state → a confirmation of unified EW theory;


Image: Image:

- events induced by neutral particles and produce hadrons: NC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \nu_{\mu}/\bar{\nu}_{\mu} + hadrons$ CC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \mu^{-}/\mu^{+} + hadrons$
- absence (NC) or presence (CC) of one muon μ ;


 π comes from the primary proton interaction);


- events induced by neutral particles and produce hadrons: NC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \nu_{\mu}/\bar{\nu}_{\mu} + hadrons$ CC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \mu^{-}/\mu^{+} + hadrons$
- absence (NC) or presence (CC) of one muon μ ;
 - where ν_{μ} and $\bar{\nu}_{\mu}$ come from: $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu} \& \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (π comes from the primary proton interaction);

- events induced by neutral particles and produce hadrons: NC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \nu_{\mu}/\bar{\nu}_{\mu} + hadrons$ CC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \mu^{-}/\mu^{+} + hadrons$
- absence (NC) or presence (CC) of one muon μ ;
 - where ν_{μ} and $\bar{\nu}_{\mu}$ come from: $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu} \& \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (π comes from the primary proton interaction);

- events induced by neutral particles and produce hadrons: NC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \nu_{\mu}/\bar{\nu}_{\mu} + hadrons$ CC: $\nu_{\mu}/\bar{\nu}_{\mu} + N \rightarrow \mu^{-}/\mu^{+} + hadrons$
- absence (NC) or presence (CC) of one muon μ ; where ν_{μ} and $\bar{\nu}_{\mu}$ come from: $\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu} \& \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ (π comes from the primary proton interaction);

- 1973, Gargamelle: giant bubble chamber filled with Freon (CF_3Br) at $\rho = 1.5 \times 10^3 Kg/m^3$ to detect particles at CERN;
- 83000 ν pictures and 207000 $\bar{\nu}$ pictures;
- dimension of the chamber are such that hadrons are identified by interaction or by range-momentum and ionisation.

- 1973, Gargamelle: giant bubble chamber filled with Freon (CF_3Br) at $\rho = 1.5 \times 10^3 Kg/m^3$ to detect particles at CERN;
- 83000 ν pictures and 207000 $\bar{\nu}$ pictures;
- dimension of the chamber are such that hadrons are identified by interaction or by range-momentum and ionisation.

- 1973, Gargamelle: giant bubble chamber filled with Freon (CF_3Br) at $\rho = 1.5 \times 10^3 Kg/m^3$ to detect particles at CERN;
- 83000 ν pictures and 207000 $\bar{\nu}$ pictures;
- dimension of the chamber are such that hadrons are identified by interaction or by range-momentum and ionisation.

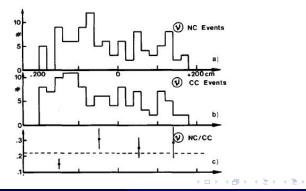
Analysis of the signal and background

- Background comes from neutral hadrons of CC events which behave in a similar way to the NC events in which we are interested;
- neutral hadrons of CC events come from ν interactions in the shielding and they yield to a "neutron star" in the bubble chamber (i.e. AS = associated events)
- the incoming neutral particle direction is obtained from the direction of the observed total momentum with a cut in total energy of > 1 GeV applied to any observed events.

| 4 同 1 4 三 1 4 三 1

Analysis of the signal and background

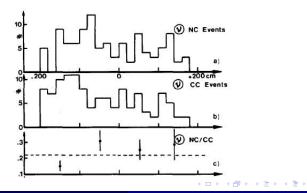
- Background comes from neutral hadrons of CC events which behave in a similar way to the NC events in which we are interested;
- neutral hadrons of CC events come from ν interactions in the shielding and they yield to a "neutron star" in the bubble chamber (i.e. AS = associated events)
- the incoming neutral particle direction is obtained from the direction of the observed total momentum with a cut in total energy of > 1 GeV applied to any observed events.


(4月) (4日) (4日)

Analysis of the signal and background

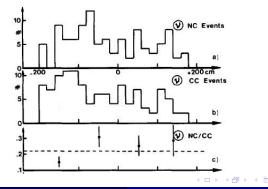
- Background comes from neutral hadrons of CC events which behave in a similar way to the NC events in which we are interested;
- neutral hadrons of CC events come from ν interactions in the shielding and they yield to a "neutron star" in the bubble chamber (i.e. AS = associated events)
- the incoming neutral particle direction is obtained from the direction of the observed total momentum with a cut in total energy of > 1 GeV applied to any observed events.

・ 同 ト ・ ヨ ト ・ ヨ ト


- NC events;
- CC events
- ratio NC/CC normalized

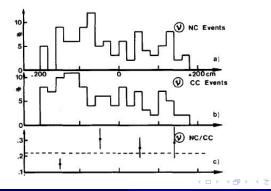
Giulia De Rosi & Laura Dieringer

Discovery of neutral currents in ν interactions in Gargamelle

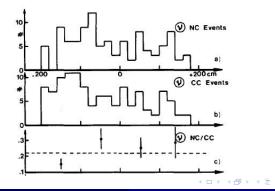

- NC events;
 CC events;
- ratio NC/CC normalized.

Giulia De Rosi & Laura Dieringer

Discovery of neutral currents in ν interactions in Gargamelle


- NC events;
- CC events;
- ratio NC/CC normalized.

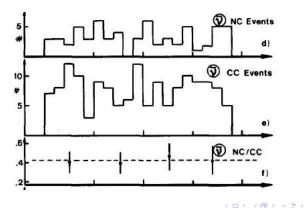
Giulia De Rosi & Laura Dieringer


Discovery of neutral currents in ν interactions in Gargamelle

- NC events;
- CC events;
- ratio NC/CC normalized.

"Infinite" mean free path of ν for both NC and CC events \rightarrow similar spatial distributions (almost flat) along ν -beam axis of NC and CC events:

- NC events;
- CC events;
- $\bullet\,$ ratio NC/CC normalized.

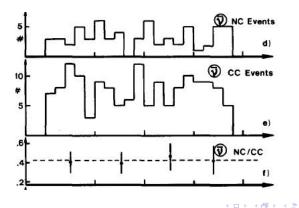

Giulia De Rosi & Laura Dieringer

Discovery of neutral currents in ν interactions in Gargamelle

For $\bar{\nu}$ -beam axis:

- NC events;
- CC events;

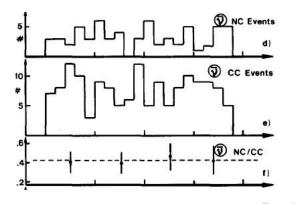
• ratio NC/CC.

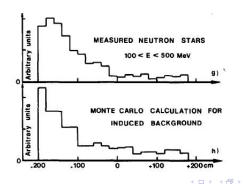

Discovery of neutral currents in ν interactions in Gargamelle

э

For $\bar{\nu}$ -beam axis:

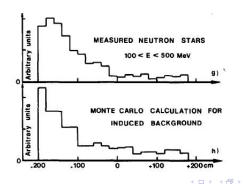
- NC events;
- CC events;


• ratio NC/CC.


э

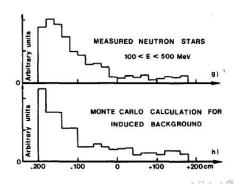
For $\bar{\nu}$ -beam axis:

- NC events;
- CC events;
- ratio NC/CC.


- Bigger cross section due to the strong interaction → exponential attenuation of the distribution of neutron stars (different from the flat distribution);
- distribution of neutron star events, computed with Monte-Carlo method, is compatible with the previous exponential distribution;

Discovery of neutral currents in ν interactions in Gargamelle

A B > A B >


- Bigger cross section due to the strong interaction → exponential attenuation of the distribution of neutron stars (different from the flat distribution);
- distribution of neutron star events, computed with Monte-Carlo method, is compatible with the previous exponential distribution;

Discovery of neutral currents in ν interactions in Gargamelle

A B > A B >

- Bigger cross section due to the strong interaction → exponential attenuation of the distribution of neutron stars (different from the flat distribution);
- distribution of neutron star events, computed with Monte-Carlo method, is compatible with the previous exponential distribution;

Discovery of neutral currents in ν interactions in Gargamelle

∃ >

Some numbers...

In a volume of 3 m^3 : for ν :

428 CC;
 15 AS;

for $\bar{\nu}$:

64 NC;

○ 148 CC;

12 AS.

・ロト ・回ト ・ヨト ・ヨト

3

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\overline{\nu}$:

- 64 NC;
- 148 CC;
- 12 AS.

<ロ> <同> <同> < 同> < 同>

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\bar{\nu}$:

○ 64 NC;

148 CC;

12 AS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\bar{\nu}$:

• 64 NC;

• 148 CC;

• 12 AS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\bar{\nu}$:

• 64 NC;

• 148 CC;

• 12 AS.

<ロ> <同> <同> < 同> < 同>

э

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\overline{\nu}$:

• 64 NC;

- 148 CC;
- 12 AS.

< ∃ >

э

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\overline{\nu}$:

- 64 NC;
- 148 CC;

• 12 AS.

< ∃ →

э

Some numbers...

In a volume of 3 m^3 : for ν :

- 102 NC;
- 428 CC;
- 15 AS;

for $\overline{\nu}$:

- 64 NC;
- 148 CC;
- 12 AS.

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- a) if monitor inductions are produced by promany products —> equal of a contract of the runs.
 Instead we observe rate domines largest in terms than in the runs.
- Most important source of background: w interacts in the shielding and produce a neutronomous in the bubble chamber.

▲ 同 ▶ → 三 ▶

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in *v* and *v* runs.
 Instead we observe rate 4 times larger in *v* run than in *v* run
- Most important source of background: w interacts in the shielding and produce a neutron star in the bubble chamber.

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in *v* and *v* runs.
 Instead we observe rate 4 times larger in *v* run than in *v* run
- Most important source of background: w interacts in the shielding and produce a neutron star in the bubble chamber.

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in ν and ν
 runs.
 Instead we observe rate 4 times larger in ν run than in ν
 run
- Most important source of background: w interacts in the shielding and produce a control of or in the bubble chamber.

▲ □ ▶ ▲ □ ▶ ▲

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in ν and ν
 runs.
 Instead we observe rate 4 times larger in ν run than in ν
 run
- Most important source of background: v interacts in the shielding and produce a neutronoster in the bubble chamber.

▲ □ ▶ ▲ □ ▶ ▲

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons \rightarrow equal rate in ν and $\bar{\nu}$ runs.

Instead we observe rate 4 times larger in ν run than in $\overline{\nu}$ run;

 Most important source of background: ν interacts in the shielding and produce a neutron star in the bubble chamber.

・ 同 ト ・ ヨ ト ・ ヨ

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in ν and ν
 runs.
 Instead we observe rate 4 times larger in ν run than in ν
 run;
- Most important source of background: ν interacts in the shielding and produce a neutron star in the bubble chamber.

Evaluation of the background

- Others background contributions come from cosmic rays or low energy captured $\mu \rightarrow$ negligible;
- if neutral hadrons are produced by primary protons → equal rate in ν and ν
 runs.
 Instead we observe rate 4 times larger in ν run than in ν
 run;
- Most important source of background: ν interacts in the shielding and produce a neutron star in the bubble chamber.

A 3 1

• We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;

- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

$(NC/CC)_{\mu} = 0.21 \pm 0.03$ $(NC/CC)_{\mu} = 0.45 \pm 0.09$

with only statistical errors;

compatible with the Weinberg parameter $\sin(2)$, in the range [0.3-0.4].

・ 同 ト ・ ヨ ト ・ ヨ ト

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

$(NC/CC)_{\mu} = 0.21 \pm 0.03$ $(NC/CC)_{\mu} = 0.45 \pm 0.09$

with only statistical errors;

compatible with the Weinberg parameter $\sin^2\theta_W$ in the range [0.3-0.4]

□ > < = > <

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

```
(NC/CC)_{\nu} = 0.21 \pm 0.03
(NC/CC)_{\overline{\nu}} = 0.45 \pm 0.09
with only statistical errors;
\downarrow
compatible with the Weinberg parameter sin^2\theta_W in the range
[0.3-0.4].
```

< 同 > < 国 > < 国 >

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

```
(NC/CC)_{\nu} = 0.21 \pm 0.03
(NC/CC)_{\overline{\nu}} = 0.45 \pm 0.09
with only statistical errors;
\downarrow
compatible with the Weinberg parameter sin^2\theta_W in the range
[0.3-0.4].
```

< 同 > < 回 > < 回 >

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

 $(NC/CC)_{\nu} = 0.21 \pm 0.03$ $(NC/CC)_{\bar{\nu}} = 0.45 \pm 0.09$

with only statistical errors;

```
compatible with the Weinberg parameter sin^2\theta_W in the range [0.3-0.4].
```

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- We observe 102 NC in ν run and 64 NC in $\bar{\nu}$ run;
- the spatial distribution is very similar to CC ν -like interactions;
- events not compatible both in number and spatial distribution with a background due to neutral particle interactions in the bubble chamber;
- best estimates

 $(NC/CC)_{\nu} = 0.21 \pm 0.03$ $(NC/CC)_{\bar{\nu}} = 0.45 \pm 0.09$

with only statistical errors;

compatible with the Weinberg parameter $sin^2\theta_W$ in the range [0.3-0.4].

くほし くほし くほし