Direct Measurement of the W Production Charge Asymmetry in $p\bar{p}$ Collisions at $\sqrt{s}=1.96\,\text{TeV}$

Matthew Lim Oliver Majerský

19 July, 2013

Charge asymmetry in W^{\pm} production

- Tevatron, $p\bar{p}$ at $\sqrt{s}=1.96\,\text{TeV}$
- Dominant production: $u \bar d o W^+$, $\bar u d o W^-$

$$A(y_W) = \frac{d\sigma^+/dy_W - d\sigma^-/dy_W}{d\sigma^+/dy_W + d\sigma^-/dy_W}$$

Charge asymmetry in W^{\pm} production

u quark carries higher fraction of proton momentum than d quark!

Motivation

- Constraining the proton PDFs ⇒ reduce total error on W mass
- Probing for physics beyond SM

Previous approach

- $W \rightarrow l\nu_l$
- W charge asymmetry measured as function of η_l $(l=e,\mu)$
- Lepton charge asymmetry ⇒ convolution of V–A asymmetry from W decays and W production asymmetry
- Problem? Convolution weakens at high $|\eta|!$

New approach

Direct measurement of $|y_W|$

- $W \rightarrow e \nu_e$
- Measure asymmetry via $|y_W|$ instead of lepton $|\eta|$
- Use lepton E_T and neutrino $\not\!\!E_T$
- Data from CDF II, $\int L dt = 1fb^{-1}$
- Region of acceptance $|y_W| < 3.0$
- Ability to improve proton PDF determinations for $0.002 \le x \le 0.8$

Reconstruction of $|y_W|$

$$y_W = ln \frac{E + p_z}{E - p_z}$$

Problem: Can't measure p_z^{ν}

- Constrain W mass: $M_W^2 = (E_l + E_{\nu})^2 + (\vec{p}_l + \vec{p}_{\nu})^2$
- \Rightarrow Determine p_z^{ν} of neutrino \Rightarrow two solutions
- Weighting factor $w_{1,2}^{\pm}$ distinguishes directionality of neutrino momentum using V–A decay distribution
- Weak dependence of $w_{1,2}^{\pm}$ on $y_W \Rightarrow$ iterative calculation

Event selection

Two types of events:

Central electrons: $|\eta| < 1.1$ Forward electrons: $1.2 < |\eta| < 3.5$

Event selection

Two types of events:

- Central electrons: $|\eta| < 1.1$
- Forward electrons: $1.2 < |\eta| < 3.5$

- Central e: EM cluster $E_T > 25 \,\text{GeV}$, $Iso(0.4) < 4.0 \,\text{GeV}$
- Forward e: EM cluster $E_T > 20 \,\text{GeV}$, $\frac{E(HAD)}{E(EM)} < 0.05$
- Missing energy (neutrino) $\not\equiv_T > 25 \,\text{GeV}$
- 537 857 events central e, 176 941 events forward e

Background processes

- $W \to au
 u_{ au}$ contribution, where au decays to e and neutrinos \Rightarrow included in the overall signal
- $Z
 ightarrow e^+ e^-$, one e not reconstructed, mimics u
- $Z \rightarrow \tau^+ \tau^-$
- QCD background

Process	Central [%]	Forward [%]
$Z ightarrow e^+ e^-$	0.59 ± 0.02	0.54 ± 0.03
$Z o au^+ au^-$	0.10 ± 0.01	0.10 ± 0.01
QCD bckgr.	1.21 ± 0.21	0.67 ± 0.18

Table 1: Considered background fractions

Uncertainties and corrections

- Charge misidentification rate: dependent on η , measured using $Z \rightarrow ee$ events (both identified with same sign)
- EM calorimeter energy scale and resolution simulation tuned to reproduce $Z \rightarrow e^+e^-$ mass peak
- ullet Simulation of calorimeter deposition and its dependence on η
- Consideration of kinematic and geometrical acceptance of events
- Trigger efficiencies for electrons dependent on η and E_T

Source	Central [%]	Forward [%]
Charge misID rate	0.18 ± 0.05	17.26 ± 2.02
EM energy scale uncertainty	± 0.05	±0.3
EM resolution uncertainty	±0.07	±0.8
Transverse recoil uncertainty	± 0.3	± 1.4
Trigger efficiencies	96.1 ± 1.0	92.5 ± 0.3

Table 2: Corrections of various types

Uncertainties and corrections

- PDF uncertainties:
 - MRST2006NNLO
 - CTEQ6.1M
- Correction of bin centers for $|y_W|$ adjusted to fixed W mass (80.403 GeV/ c^2)
- Combination of $A(y_W)$ and $-A(-y_W)$ bins (due to CP invariance) valid due to small correlation (< 0.05)

Results

The measured W production charge asymmetry and predictions from (a) NLO CTEQ6.1 and (b) NNLO MRTST2006, with their associated PDF uncertainties.

Conclusion

- First direct measurement of y_W using $1 fb^{-1}$ data
- Total uncertainties smaller than PDF uncertainties ⇒ measurement more sensitive to the ratio of d/u momentum distributions in proton at high x than previous approach
- Results expected to improve precision of global PDF fits

Weighting factor for solutions of longitudinal momentum of neutrino

$$w_{1,2}^{\pm} = \frac{P_{\pm}(\cos\theta_{1,2}^{*}, y_{1,2}, p_{T}^{W})\sigma^{\pm}(y_{1,2})}{P_{\pm}(\cos\theta_{1}^{*}, y_{1}, p_{T}^{W})\sigma^{\pm}(y_{1}) + P_{\pm}(\cos\theta_{2}^{*}, y_{2}, p_{T}^{W})\sigma^{\pm}(y_{2})},$$

where

$$P_{\pm}(\cos\theta^*, y_W, p_T^W) = (1 \mp \cos\theta^*)^2 + Q(y_W, p_T^W)(1 \pm \cos\theta^*)^2.$$

- $\sigma^{\pm}(y_{1,2})$ calculated using NNLO QCD calculation using MRST 2006 NNLO PDFs
- Factor $Q(y_W, p_T^W)$ determined by quark vs antiquark composition of proton using MC@NLO generator