Direct Measurement of the W Production Charge Asymmetry in $p\bar{p}$ Collisions at $\sqrt{s}=1.96\,\text{TeV}$ Matthew Lim Oliver Majerský 19 July, 2013 # Charge asymmetry in W^{\pm} production - Tevatron, $p\bar{p}$ at $\sqrt{s}=1.96\,\text{TeV}$ - Dominant production: $u \bar d o W^+$, $\bar u d o W^-$ $$A(y_W) = \frac{d\sigma^+/dy_W - d\sigma^-/dy_W}{d\sigma^+/dy_W + d\sigma^-/dy_W}$$ # Charge asymmetry in W^{\pm} production u quark carries higher fraction of proton momentum than d quark! #### Motivation - Constraining the proton PDFs ⇒ reduce total error on W mass - Probing for physics beyond SM ### Previous approach - $W \rightarrow l\nu_l$ - W charge asymmetry measured as function of η_l $(l=e,\mu)$ - Lepton charge asymmetry ⇒ convolution of V–A asymmetry from W decays and W production asymmetry - Problem? Convolution weakens at high $|\eta|!$ # New approach # Direct measurement of $|y_W|$ - $W \rightarrow e \nu_e$ - Measure asymmetry via $|y_W|$ instead of lepton $|\eta|$ - Use lepton E_T and neutrino $\not\!\!E_T$ - Data from CDF II, $\int L dt = 1fb^{-1}$ - Region of acceptance $|y_W| < 3.0$ - Ability to improve proton PDF determinations for $0.002 \le x \le 0.8$ # Reconstruction of $|y_W|$ $$y_W = ln \frac{E + p_z}{E - p_z}$$ # Problem: Can't measure p_z^{ν} - Constrain W mass: $M_W^2 = (E_l + E_{\nu})^2 + (\vec{p}_l + \vec{p}_{\nu})^2$ - \Rightarrow Determine p_z^{ν} of neutrino \Rightarrow two solutions - Weighting factor $w_{1,2}^{\pm}$ distinguishes directionality of neutrino momentum using V–A decay distribution - Weak dependence of $w_{1,2}^{\pm}$ on $y_W \Rightarrow$ iterative calculation #### Event selection Two types of events: Central electrons: $|\eta| < 1.1$ Forward electrons: $1.2 < |\eta| < 3.5$ #### Event selection #### Two types of events: - Central electrons: $|\eta| < 1.1$ - Forward electrons: $1.2 < |\eta| < 3.5$ - Central e: EM cluster $E_T > 25 \,\text{GeV}$, $Iso(0.4) < 4.0 \,\text{GeV}$ - Forward e: EM cluster $E_T > 20 \,\text{GeV}$, $\frac{E(HAD)}{E(EM)} < 0.05$ - Missing energy (neutrino) $\not\equiv_T > 25 \,\text{GeV}$ - 537 857 events central e, 176 941 events forward e # Background processes - $W \to au u_{ au}$ contribution, where au decays to e and neutrinos \Rightarrow included in the overall signal - $Z ightarrow e^+ e^-$, one e not reconstructed, mimics u - $Z \rightarrow \tau^+ \tau^-$ - QCD background | Process | Central [%] | Forward [%] | |------------------------|-----------------|-----------------| | $Z ightarrow e^+ e^-$ | 0.59 ± 0.02 | 0.54 ± 0.03 | | $Z o au^+ au^-$ | 0.10 ± 0.01 | 0.10 ± 0.01 | | QCD bckgr. | 1.21 ± 0.21 | 0.67 ± 0.18 | Table 1: Considered background fractions #### Uncertainties and corrections - Charge misidentification rate: dependent on η , measured using $Z \rightarrow ee$ events (both identified with same sign) - EM calorimeter energy scale and resolution simulation tuned to reproduce $Z \rightarrow e^+e^-$ mass peak - ullet Simulation of calorimeter deposition and its dependence on η - Consideration of kinematic and geometrical acceptance of events - Trigger efficiencies for electrons dependent on η and E_T | Source | Central [%] | Forward [%] | |-------------------------------|-----------------|------------------| | Charge misID rate | 0.18 ± 0.05 | 17.26 ± 2.02 | | EM energy scale uncertainty | ± 0.05 | ±0.3 | | EM resolution uncertainty | ±0.07 | ±0.8 | | Transverse recoil uncertainty | ± 0.3 | ± 1.4 | | Trigger efficiencies | 96.1 ± 1.0 | 92.5 ± 0.3 | Table 2: Corrections of various types #### Uncertainties and corrections - PDF uncertainties: - MRST2006NNLO - CTEQ6.1M - Correction of bin centers for $|y_W|$ adjusted to fixed W mass (80.403 GeV/ c^2) - Combination of $A(y_W)$ and $-A(-y_W)$ bins (due to CP invariance) valid due to small correlation (< 0.05) #### Results The measured W production charge asymmetry and predictions from (a) NLO CTEQ6.1 and (b) NNLO MRTST2006, with their associated PDF uncertainties. #### Conclusion - First direct measurement of y_W using $1 fb^{-1}$ data - Total uncertainties smaller than PDF uncertainties ⇒ measurement more sensitive to the ratio of d/u momentum distributions in proton at high x than previous approach - Results expected to improve precision of global PDF fits # Weighting factor for solutions of longitudinal momentum of neutrino $$w_{1,2}^{\pm} = \frac{P_{\pm}(\cos\theta_{1,2}^{*}, y_{1,2}, p_{T}^{W})\sigma^{\pm}(y_{1,2})}{P_{\pm}(\cos\theta_{1}^{*}, y_{1}, p_{T}^{W})\sigma^{\pm}(y_{1}) + P_{\pm}(\cos\theta_{2}^{*}, y_{2}, p_{T}^{W})\sigma^{\pm}(y_{2})},$$ where $$P_{\pm}(\cos\theta^*, y_W, p_T^W) = (1 \mp \cos\theta^*)^2 + Q(y_W, p_T^W)(1 \pm \cos\theta^*)^2.$$ - $\sigma^{\pm}(y_{1,2})$ calculated using NNLO QCD calculation using MRST 2006 NNLO PDFs - Factor $Q(y_W, p_T^W)$ determined by quark vs antiquark composition of proton using MC@NLO generator