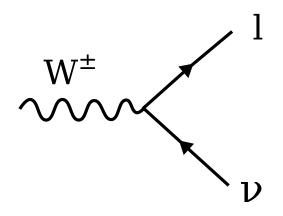
Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	00		0000

Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders C G Lester and D J Summers, 1999

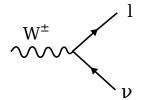

Benjamin Brunt, Lorenzo Capriotti

16/07/2013 - HASCO 2013

イロト 不得下 イヨト イヨト 二日

Transverse mass	MT2	mSUGRA simulation	Conclusions
●000			

Leptonic decay of the W boson

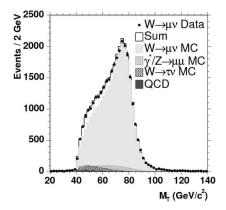

Transverse mass	MT2	mSUGRA simulation	Conclusions
0●00	00	0000	

Transverse mass

Define the 'transverse mass'

where
$$E_{
m T}^{
m l}=\sqrt{{p_{
m T}^{
m l}}^2+m_l^2}$$

and $E_{\rm T} = p_{\rm T}$ (i.e. assuming $m_{\nu} = 0$)


Defined this way, $m_{\rm T}$ has the property that

$$m_{\rm T}^2 \le m_{\rm W}^2$$

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ こ の へ ()
3/15

Transverse mass	MT2	mSUGRA simulation	Conclusions
0000			

Mass of the W boson

(1) CDF data for mass of the W boson, using the transverse mass variable.

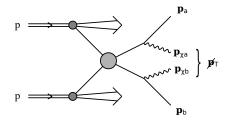
Transverse mass	MT2	mSUGRA simulation	Conclusions
000●	00	0000	

m_{T} for general mass

Previously, we assumed $m_{\nu} = 0$ ('invisible' particle is massless).

How about a general process

$$\tilde{l} \rightarrow l \tilde{\chi}$$


Can define

$$\begin{split} m_T^2(\mathbf{p}_{Tl},\mathbf{p}_{T\tilde{\chi}}) &\equiv m_l^2 + m_{\tilde{\chi}}^2 + 2(E_{Tl}E_{T\tilde{\chi}} - \mathbf{p}_{Tl} \cdot \mathbf{p}_{T\tilde{\chi}}) \end{split}$$
 Where again
$$m_T^2(\mathbf{p}_{Tl},\mathbf{p}_{T\tilde{\chi}}) \leq m_{\tilde{l}}^2 \end{split}$$

Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	●0	0000	0000

A new transverse mass

Here's an interesting process:

Why this? Example:

$$pp \rightarrow \text{jets} + \tilde{l}_R^+ \tilde{l}_R^- \rightarrow \text{jets} + l^+ l^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

We'd like to find the mass of the pair-produced \tilde{l} .

Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	○●	0000	

A new transverse mass

Remember,

$$m_{\tilde{l}}^2 \ge m_T^2(\mathbf{p}_{Tl}, \mathbf{p}_{T\tilde{\chi}})$$

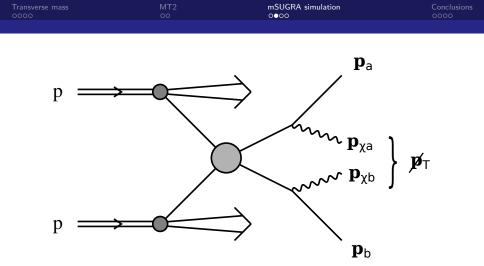
So for pair-production, for each event

$$m_{\tilde{l}}^2 \geq \max\{m_T^2(\mathbf{p}_{Tla}, \mathbf{p}_{T\tilde{\chi}a}), m_T^2(\mathbf{p}_{Tlb}, \mathbf{p}_{T\tilde{\chi}b})\}$$

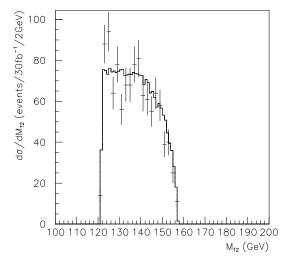
 $\mathbf{\dot{p}}_{\mathrm{T}} = \mathbf{p}_{T\tilde{\chi}a} + \mathbf{p}_{T\tilde{\chi}b}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

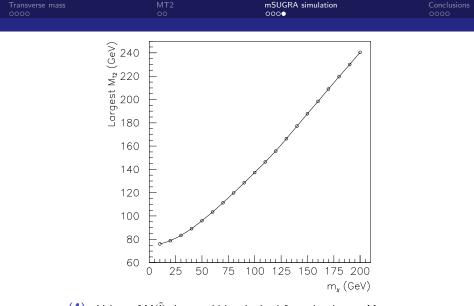
Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	00	●000	


Simulation

The process used for the simulation in order to show the application of M_{T2} is the following:


$$pp \to X + \tilde{l}^+ \tilde{l}^- \to X + l^+ l^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$$

イロト イポト イヨト イヨト 三日


The model used is the fifth minimal supergravity model (mSUGRA) point (R-parity conserved). M (\tilde{l}) = 157.1 GeV M ($\tilde{\chi}_0^1$) = 121.5 GeV

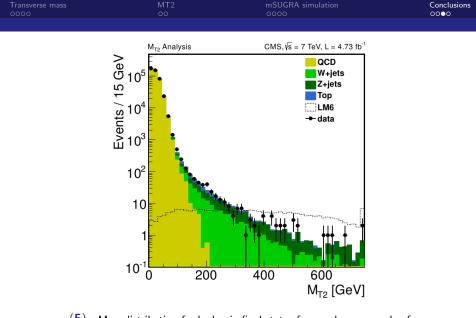
(2) Diagram of a generic process involving two invisible particles in the final state

(3) Simulated data with error bars: 1105 events (30 fb⁻¹). Histogram: 300 fb⁻¹.

(4) Values of $M(\tilde{l})$ that would be obtained from that largest M_{T2} value observed, where differing values of $M(\tilde{\chi}_0^1)$ are used in the calculation

3

Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	00		●000


Conclusions

- Introduction of a variable for measuring masses in hadron colliders, where longitudinal momentum is unknown
- ► Analogous to M_T but useful for pair production of the measured particle, and for massive invisible particles
- Model independent
- One of the main applications could be measuring the mass of sleptons at LHC

Transverse mass	MT2	mSUGRA simulation	Conclusions
0000	00		○●○○

Conclusions

- The simulation looks very promising, but background and experimental mis-measurements errors have to be included in a real data analysis
- In principle the maximum value of M_{T2} should correspond to the mass of the slepton
- Like for W mass measurements, the smearing and the slope need to be taken into account

(5) M_{T2} distribution for hadronic final states from a decay cascade of some non-LSP sparticle, using the CMS SUSY LM6 model for simulation.

Additional references

- "Model independent sparticle mass measurements at ATLAS" Lester 2001 (DPhil dissertation)
- "m_{T2}: The truth behind the glamour" Barr, Lester and Stephens 2003
- "Search for supersymmetry in hadronic final states using m_{T2} " CMS collaboration 2012

イロト 不得下 イヨト イヨト 二日

15/15