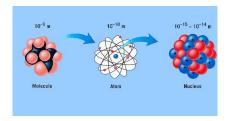
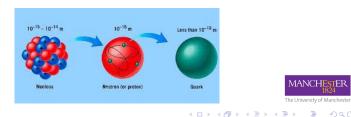
Measurement of Dijet Angular Distributions at $\sqrt{s} = 1.96 \, TeV$ and Searches for Quark Compositeness and Extra Spatial Dimensions

Valentina Cicero & Shanzhen Chen


July 17, 2013



A (1) > A (2) > A

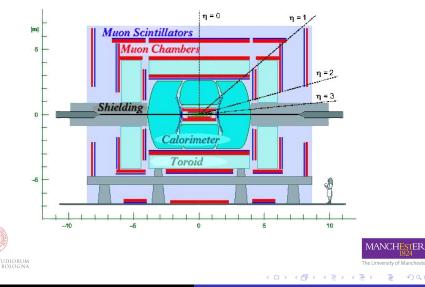
A Little bit of History...

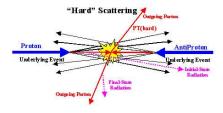
• From Atoms, to Nucleons, to Quarks... Is it the end of the story?

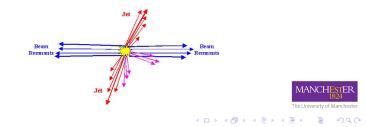
Measurement of Dijet Angular Distributions at $\sqrt{s} = 1.96 TeV$

3

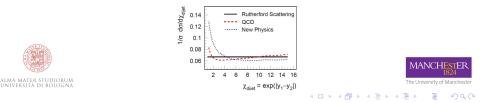
A Little bit of History.....


• Do we really understand the space we live in? Are we satisfied with 3D space?





イロト イヨト イヨト イヨト


 $\sqrt{s} = 1.96 \, TeV$

Dijets

- At large momentum transfers, diject production has the largest cross section of all processes at a hadron collider and therefore directly probes the highest energy regime.
- It can be used to test the SM at previously unexplored small distance scales and to search for signals predicted by new physics models.
- In QCD the distribution of dijets shows small but noticeable deviations from Rutherford scattering, an excess at large angles from the beam axis would be a sign of new physics process, such as **quark compositeness** or the existence of **extra spatial dimensions**.

Dijet distributions

- Jets are defined by Run II midpoint cone jet algorithm with a cone radius of $R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} = 0.7$ where $y = 0.5 ln(\frac{1+\beta cos\theta}{1-\beta cos\theta})$ is the rapidity of the jet with $\beta = \frac{|\vec{p}|}{E}$
- Distributions are measured in 10 regions of dijet invariant mass M_{jj} in the variable

 $\chi_{dijet} = \mathbf{e}^{|y_1 - y_2|}$ because Rutherford scattering angle is independent of χ_{dijet} .

- in massless 2 \longrightarrow 2 scattering limit $\chi_{dijet} = \frac{1+\cos\theta^*}{1-\cos\theta^*}$
- the phase space of this analysis is defined by $|y_{jet}| < 2.4$

ALMA MATER STUDIORUM Università di Bologna MANCH

Background and instrumental effects corrections

- Data sample used $L = 0.7 fb^{-1}$
- The jets energy is corrected for showers and multiple $p\bar{p}$ interactions
- Difference in electron and photon and real jet showers is used to suppress the background
- Simulated events generated with PYTHIA are subjected to a simulation of the D0 detector response and reweighted according to M_{jj} distribution data
- Corrections for unrecostructed muons and neutrinos are included.

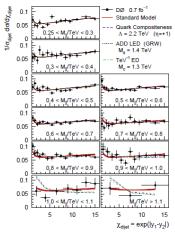
 \Rightarrow correction factors for differential cross section : 0.9 \sim 1.0 \implies fraction of background events : less than 0.1%

MANCE

・ロト ・回ト ・ヨト ・ヨト

Quark Compositeness : quarks could be made of other particles


Parameters : energy scale Λ ; sign of the interference term η


ADD LED : extra spatial dimensions exist in which gravity is allowed to propagate

Parameters : effective Planck scale, M_S ; number n of extra dimensions (HLZ model)

TeV^{-1} ED : extra dimensions exist at the TeV^{-1} scale

Parameters : compactification scale, M_C

- Normalized differential cross sections in dijet compared to standard model predictions and to the predictions of various new physics models
- New physics models change shape in χ_{dijet} at higher M_{dijet}
- The higher the parameters in the new physics models, the closer the new models to SM

ヘロト ヘヨト ヘヨト ヘヨト

MANCHES

Expected and observed 95% C.L. limits (in units of TeV) on various new physics models

· · · · · · · · · · · · · · · · · · ·	Prior flat in NP Lagrangian		Prior flat in NP x-section		$\Delta \chi^2 = 3.84$ criterion	
Model (parameter)	Observed	Expected	Observed	Expected	Observed	Expected
$QC(\Lambda)$						
$\eta=+1$	2.91	3.06	2.76	2.84	2.80	2.92
$\eta = -1$	2.97	3.06	2.75	2.82	2.82	2.96
$TeV^{-1} ED(M_C)$	1.73	1.67	1.60	1.55	1.66	1.59
ADD $LED(M_S)$						
GRW	1.53	1.67	1.47	1.59	1.49	1.66
HLZ $n = 3$	1.81	1.98	1.75	1.89	1.77	1.97
HLZ n = 4	1.53	1.67	1.47	1.59	1.49	1.66
HLZ $n = 5$	1.38	1.51	1.33	1.43	1.35	1.50
HLZ $n = 6$	1.28	1.40	1.24	1.34	1.25	1.39
HLZ $n = 7$	1.21	1.33	1.17	1.26	1.19	1.32

ALMA MATER STUDIORUM Università di Bologna

2

イロン 不同 とくほど 不同 とう

- Similar analysis did in CMS and ATLAS (arXiv:1202.5535v1, arXiv:1103.3864v1)
- More strict limits were set as the energy LHC could reach is higher.
- Still no sign of new physics

・ロト ・回ト ・ヨト ・ヨト

- First measurement of dijet angular distributions in Run II of the Fermilab Tevatron Collider
- A model independent search set limits on quark compositeness, ADD large extra dimensions, and TeV^{-1} extra dimensions models
- For the TeV^{-1} extra dimensions model: first direct search at a collider
- No indication of new physics detected

Thank you!

イロト イヨト イヨト イヨト