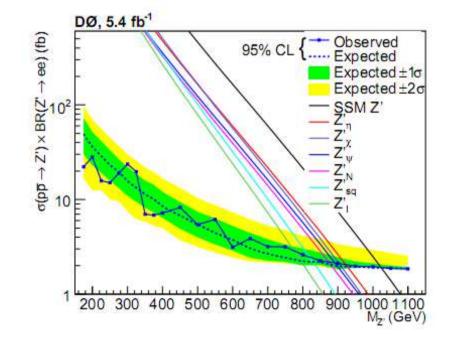
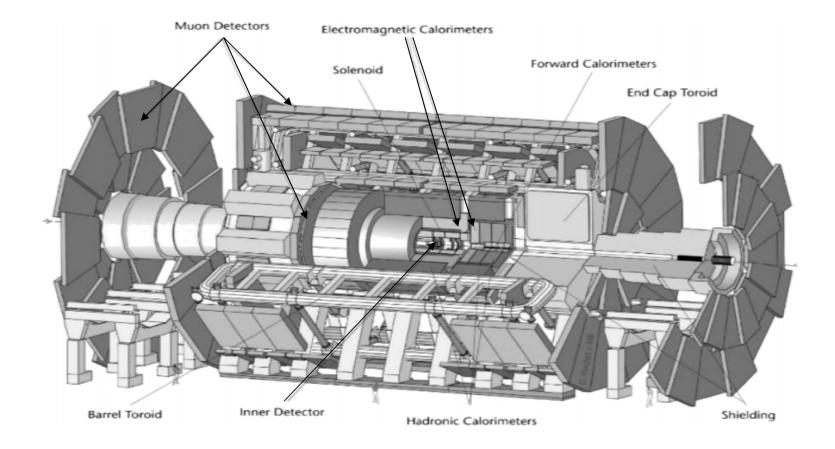
Search for Dilepton Resonances in *pp* Collisions at $\sqrt{s}=7$ TeV with the ATLAS Detector

Silvan Etter Michal Dubovsky

Motivation


- Search for physics beyond the standard model
- Several theories extending the standard model assume existence of new heavy bosons
 - Sequential standard model (SSM) predicts gauge boson Z` with same coupling to fermions as the Z boson.

Motivation


- E₆ grand unified symmetry group predicts Z`(θ_{E₆}), choice of θ_{E₆} leads to the specific Z` states named Z`_Ψ Z`_N, Z`_η, Z`_I, Z`_S, Z`_X
- Randall-Sundrum (RS) model predicts spin-2 graviton G*
- All these bosons can decay into lepton pairs e⁺e⁻ and µ⁺ µ⁻

Before the experiment

- Already different lower mass limits around 1 TeV from previous experiments at Tevatron and on ≈ 40 pb⁻¹ of data recorded in 2010 at LHC
- try to look for them at higher energies / to put higher mass constrains

ATLAS

ATLAS

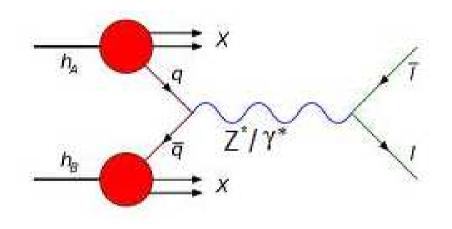
Consists of 4 detectors:

- Inner detector
- Electromagnetic calorimeter ΔE/E ≈ 11,5% / √E ± 0,5% (energy in GeV)
- Hadronic calorimeter
- Muon detector

 $\Delta p/p \approx 2-3\%$ (10 GeV $\Delta p/p \approx 10\%$ (p ≈ 10 TeV)

Track of electrons is recorded in inner detector and in electromagnetic calorimeters where they are absorbed. Muons are highly penetrating and they are absorbed in muon detector.

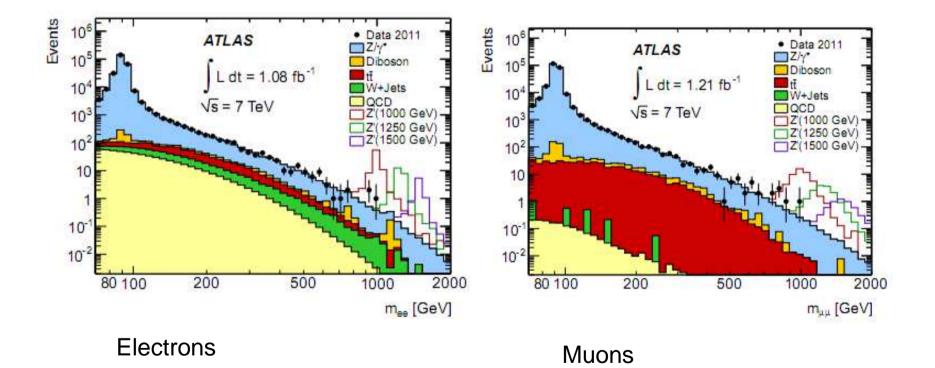
Selection criteria for e⁺e⁻

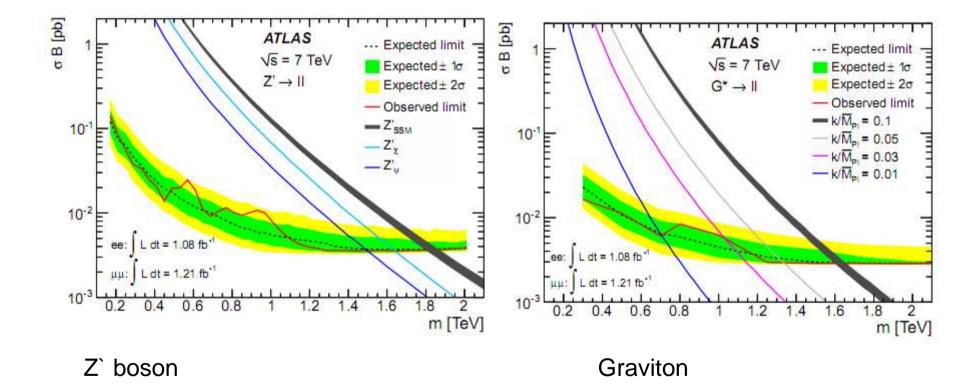

- Isolated electrons with transverse energy
 E_T > 25 GeV and |η| < 2,47 per lepton are required
- It is not necessary to have opposite charge to minimize the impact of possible charge misidentification
- A hit in the first active pixel layer is required to suppress background from photon conversions.

Selection criteria for $\mu^+\mu^-$

- Two isolated muon candidates of opposite charge are required, each satisfying
 p_T > 25 GeV
- To suppress background from cosmic rays, the muon tracks are required to have a transverse impact parameter |d₀| < 0.2 mm

Background


Sources:
Mostly Drell-Yan *tt*Diboson
W + jets
QCD


Experimental results/background

$m_{e^+e^-}[\text{GeV}]$	70-110	110-200	200-400	400-800	800-3000
DY	258482 ± 410	5449 ± 180	613 ± 26	53.8 ± 3.1	2.8 ± 0.1
$t\overline{t}$	218 ± 36	253 ± 10	82 ± 3	5.4 ± 0.3	0.1 ± 0.0
Diboson	368 ± 19	85 ± 5	29 ± 2	3.1 ± 0.5	0.3 ± 0.1
W+jets	150 ± 100	150 ± 26	43 ± 10	4.6 ± 1.8	0.2 ± 0.4
QCD	332 ± 59	191 ± 75	36 ± 29	1.8 ± 1.4	< 0.05
Total	259550 ± 510	6128 ± 200	803 ± 40	68.8 ± 3.9	3.4 ± 0.4
Data	259550	6117	808	65	3
$m_{\mu+\mu-}$ [GeV]	70-110	110-200	200-400	400 - 800	800-3000
DY	236319 ± 320	5171 ± 150	483 ± 22	40.3 ± 2.5	2.0 ± 0.3
$t\overline{t}$	193 ± 21	193 ± 20	63 ± 6	4.2 ± 0.4	0.1 ± 0.0
Diboson	307 ± 16	69 ± 5	25 ± 2	1.7 ± 0.5	< 0.05
W+jets					
vv +jets	1 ± 1	1 ± 1	< 0.5	< 0.05	< 0.05
QCD	1 ± 1 1 ± 1	1 ± 1 < 0.5	< 0.5 < 0.5	< 0.05 < 0.05	< 0.05 < 0.05
			-	-	-

Invariant mass distribution

Limit of Z` and Graviton mass

Uncertainties and statistics

- Data are consistent with SM predictions at *p* value 54% for e⁺e⁻ and 24% for μ⁺μ⁻
- Dominant uncertainties are theoretical, estimated 10% due to PDF and α_s variations
- Upper limits are set at the 95% C.L. on the cross section times branching fraction, meaning that there is no hint for resonance in these energies

Resulting mass limits for different models

- 1,83 TeV for sequential standard model Z` boson
- 1,49-1,64 TeV for various E₆-motivated Z` bosons
- 0,71-1,63 TeV for a Randall-Sundrum graviton with various couplings