Probabilistic Reasoning in Frontier Physics
 - inference, forecasting, decision -

Giulio D'Agostini
giulio.dagostini@romal.infn.it

Dipartimento di Fisica
Università di Roma La Sapienza
"Probability is good sense reduced to a calculus" (Laplace)

Preamble

- What can we say in just a few hours? (The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)

Preamble

- What can we say in just a few hours? (The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...

Preamble

- What can we say in just a few hours?
(The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...
(note that the mentioned course is not about 'statistics'!)

Preamble

- What can we say in just a few hours?
(The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...
(note that the mentioned course is not about 'statistics'!)
... in contrast to the nice Physics courses, in which the issues are related and stem from some foundamendal 'principles'

Preamble

- What can we say in just a few hours?
(The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...
(note that the mentioned course is not about 'statistics'!)
... in contrast to the nice Physics courses, in which the issues are related and stem from some foundamendal 'principles'
\Rightarrow No 'prescriptions', but general ideas

Preamble

- What can we say in just a few hours?
(The course I give in Rome to PhD students on
"Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...
(note that the mentioned course is not about 'statistics'!)
... in contrast to the nice Physics courses, in which the issues are related and stem from some foundamendal 'principles'
\Rightarrow No 'prescriptions', but general ideas
... possibly arising from
'first principles' (as we physicists like).

Preamble

- What can we say in just a few hours? (The course I give in Rome to PhD students on "Probability and Uncertainty in Physics" takes 40 hours!)
- 'Statistics' is often felt as a boring collection of prescriptions...
(note that the mentioned course is not about 'statistics'!)
... in contrast to the nice Physics courses, in which the issues are related and stem from some foundamendal 'principles'
\Rightarrow No 'prescriptions', but general ideas
... possibly arising from
'first principles' (as we physicists like).
\Rightarrow Probabilistic approach

An invitation to (re-)think on foundamental aspects of data analysis.

This first lesson:

1. Claims of discoveries based on 'sigmas' (based on a lecture to Italian teachers in Frascati, http://www.lnf.infn.it/edu/incontri/2012/)
2. Basic of probabilistic inference (and related topics)

Tomorrow other applications will be shown
\Rightarrow Lorenzo Bellagamba

- April, CDF: absolutely unexpected excess at about 150 GeV

$$
\approx 3.2 \sigma
$$

- September, Opera: neutrinos faster than light

$$
\approx 6 \sigma
$$

- December, ATLAS e CMS at LHC: signal compatible with the Higgs at about 125 GeV :
$\approx 3 \sigma$

2011: non only Opera...

- April, CDF: absolutely unexpected excess at about 150 GeV

$$
\approx 3.2 \sigma
$$

- September, Opera: neutrinos faster than light

$$
\approx 6 \sigma
$$

- December, ATLAS e CMS at LHC: signal compatible with the Higgs at about 125 GeV :
$\approx 3 \sigma$
Why there was substancial scepticism towards the first two anouncements, in constrast with a cautious/pronounced optimism towards the third one?

April 2011

CDF Collaboration at the Tevatron

April 2011

CDF Collaboration at the Tevatron

April 2011

CDF Collaboration at the Tevatron

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations"

April 2011

CDF Collaboration at the Tevatron

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations"

April 2011

CDF Collaboration at the Tevatron

What does it mean?

Tevatron and CDF

6.28 km, near Chicago

Tevatron and CDF

$p \rightarrow \cdot \leftarrow \bar{p}$
 $[\approx 1 \mathrm{TeV}+1 \mathrm{TeV}$]

Tevatron and CDF

CDF: a multipurpose ('hermetic') detector

Tevatron and CDF

... a large, very sophisticated detector!

Jet-jet + W

$W+(q \bar{q}) \quad[+$ 'remnants']

Jet-jet + W

$W+2$ jet [+ much more]

Jet-jet + W

$\Rightarrow M_{j j}+W+\ldots$

G. D'Agostini, Probabilistic Inference (Goettingen, 11 July 2013) - (C) G. D'Agostini - p. 8

The 'bump'!

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in $p \bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV', (CDF, 4 aprile 2011)

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

The 'bump'!

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in $p \bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV', (CDF, 4 aprile 2011)

Sigma and gaussian distribution

Princeps mathematicorum

GS7181280U5

Sigma and gaussian distribution

Sigma e probability [gaussian!]

If the random number X is described by a gaussian pdf

$$
\begin{aligned}
P(-\sigma \leq X \leq+\sigma) & =68.3 \% \\
P(-2 \sigma \leq X \leq+2 \sigma) & =95.4 \% \\
P(-3 \sigma \leq X \leq+3 \sigma) & =99.73 \% \\
1-P(-3 \sigma \leq X \leq+3 \sigma) & =0.27 \% \\
1-P(-4 \sigma \leq X \leq+4 \sigma) & =6.3 \times 10^{-5} \\
\cdots & =\ldots \\
1-P(-6 \sigma \leq X \leq+6 \sigma) & =2.0 \times 10^{-9} \\
1-P(-3.2 \sigma \leq X \leq+3.2 \sigma) & =1.4 \times 10^{-3} \\
P(X \geq+3.17 \sigma) & =7.6 \times 10^{-4}
\end{aligned}
$$

p-value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

p-value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

Begin to fasten seat belts!

p-value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

Begin to fasten seat belts!

- What is a p-value?
- In so far does it provides us a 'significance’?

p-value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

Begin to fasten seat belts!

- What is a p-value?
- In so far does it provides us a 'significance'?

In short,

- Is 7.6×10^{-4} a probability?
- of what?

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"

$P($ Statistical fluctuation $) \leq 0.25 \%$!

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"

$P($ Statistical fluctuation $) \leq 0.25 \%$!
 $P($ True Signal $) \geq 99.75 \%$!!

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"

$P($ Statistical fluctuation $) \leq 0.25 \%$!
 $P($ True Signal $) \geq 99.75 \%$!!

Eureka!!

Aprile 2011, the 'bump’ explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
[Do not ask me how 7.6×10^{-4} becomes $<2.5 \times 10^{-3}$ (but this can be considere a minor detail...)]

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!
Who believed it was - at 99.75% ! - a discover?

- the journalist who reported the news?
- the CDF contactperson and/or the Fermilab PR's who contacted him?

Aprile 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
> "the most significant in physics in half a century"

Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!
Who believed it was - at 99.75% ! - a discover?

- the journalist who reported the news?
- the CDF contactperson and/or the Fermilab PR's who contacted him?

From my experience, journalists might make imprecisions, bad they do not invent pieces of news [... at least scientific ones. . .:-)]

Aprile 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

Aprile 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

The significance of this excess was determined to be 3.2 sigma, after accounting for the effect of systematic uncertainties. This means that there is less than a 1 in 1375 chance that the effect is mimicked by a statistical fluctuation."

Aprile 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

The significance of this excess was determined to be 3.2 sigma, after accounting for the effect of systematic uncertainties. This means that there is less than a 1 in 1375 chance that the effect is mimicked by a statistical fluctuation."
$1 / 1375=7.3 \times 10^{-4} \Rightarrow P($ No stat. fluct. $)=99.93 \%$!

Aprile 2011, the 'bump' explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

Aprile 2011, the 'bump' explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

It is what is known as a "three-sigma event," and this refers to the statistical certainty of a given result. In this case, this result has a 99.7 percent chance of being correct (and a 0.3 percent chance of being wrong)."

Aprile 2011, the 'bump’ explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

It is what is known as a "three-sigma event," and this refers to the statistical certainty of a given result. In this case, this result has a 99.7 percent chance of being correct (and a 0.3 percent chance of being wrong)."
It seems we are understanding well, besides the fact of how 99.9\% becomes 99.7\%...

Aprile 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke."

Aprile 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke." $\Rightarrow P($ Not Fluke $)=P($ "Genuine" $)=99.99 \%$

Aprile 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke." $\Rightarrow P($ Not Fluke $)=P($ "Genuine") $=99.99 \%$
But, at the end of the post:

1. "My money is on the false alarm at the moment,..."
2. ". . . but I would be very happy to lose it."
3. "And I reserve the right to change my mind rapidly as more data come in!"

Aprile 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke." $\Rightarrow P($ Not Fluke $)=P($ "Genuine") $=99.99 \%$
But, at the end of the post:

1. "My money is on the false alarm at the moment,..."
2. ". . . but I would be very happy to lose it."
3. "And I reserve the right to change my mind rapidly as more data come in!"

Assolutetly meaningful! (A part from the initial mismatch)

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."

A materpieceof good reasoning
Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..." "I don't believe it!"

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..." "I don't believe it!"
2. ". . . but I would be very happy to lose it." "What I wish" $=$ "What I would like"

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..." "I don't believe it!"
2. ". . . but I would be very happy to lose it." "What I wish" \neq "What I would like"
3. "And I reserve the right to change my mind rapidly as more data come in!"
"Learning from the experience!"
\Rightarrow A physicist should never be dogmatic

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..." "I don't believe it!"
2. ". . . but I would be very happy to lose it."

$$
\text { "What I wish" } \neq \text { "What I would like" }
$$

3. "And I reserve the right to change my mind rapidly as more data come in!"
"Learning from the experience!"
\Rightarrow A physicist should never be dogmatic
But how must our convictions rationally change on the light of new experimental data? Is there a logical rule?

‘Significant’, but not believable!.

Jon Butterworth was not the only one to disbelieve the result.
Indeed, the largest majority of physicists disbelieve it.

‘Significant’, but not believable!.

Jon Butterworth was not the only one to disbelieve the result.
Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6 6 !)

‘Significant’, but not believable!.. .

Jon Butterworth was not the only one to disbelieve the result.
Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6 6 !)
But, then, what the hell do "significances" mean?

‘Significant’, but not believable!... .

Jon Butterworth was not the only one to disbelieve the result.
Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6σ !)
But, then, what the hell do "significances" mean?
"de Rujula's paradox":
"If you disbelieve every result presented as having a 3 sigma - or "equivalently" a 99.7\% chance - of being correct. . . You will turn out to be right 99.7% of the times."
(Alvaro de Rujula, private communication)

The cemetery of Physics

THE CEMETERY OF PHYSIČS
is FULL OF WONDERFUL EFFECTS...

...THAT VERY $\triangle F T E N$ LERD
Alvaro de Rujula TA Theoretical, expral. procress

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:] \rightarrow " H_{0} " ("null hypothesis")

Testing one hypothesis

- Basic Idea:
- let's start from a ‘conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}

Testing one hypothesis

- Basic Idea:
- let's start from a ‘conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}

Testing one hypothesis

- Basic Idea:
- let's start from a ‘conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}
- In practice:
\rightarrow does it make sense?
\rightarrow how is it done?

Testing one hypothesis

- Basic Idea:
- let's start from a ‘conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}
- In practice:
\rightarrow does it make sense?
\rightarrow how is it done?
Let's review the practice and what is behind it \Rightarrow

Falsificationism

Usually referred to Popper and still considered by many as the key of scientific progress.

Falsificationism

Usually referred to Popper
and still considered by many as the key of scientific progress.

$$
\text { if } C_{i} \ngtr E_{0} \text {, then } E_{0}^{(\text {mis })} \nrightarrow C_{i}
$$

\Rightarrow Causes that cannot produce the observed effects are ruled out ('falsified').

Falsificationism

Usually referred to Popper
and still considered by many as the key of scientific progress.

$$
\text { if } C_{i} \ngtr E_{0} \text {, then } E_{0}^{(\text {mis })} \nrightarrow C_{i}
$$

\Rightarrow Causes that cannot produce the observed effects are ruled out ('falsified').
It seems OK - 'obvious'! - but it is indeed naïve for several aspects.

Proof by contradiction ... ‘extended’...

Falsification rule: to what is 'inspired'?

Proof by contradiction ... ‘extended’...

Falsification rule: to what is 'inspired'?

Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive ‘all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Proof by contradiction ... ‘extended’...

Falsification rule: to what is 'inspired'?
Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive 'all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Popperian falsificationism
extends the reasoning to experimental sciences

Proof by contradiction ... ‘extended’...

Falsification rule: to what is 'inspired'?
Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive 'all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Popperian falsificationism
extends the reasoning to experimental sciences
is this extension legitimate?

Falsificationism? OK, but. ..

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)

Falsificationism? OK, but. ..

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)
- What to do is nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?

Falsificationism? OK, but. ..

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)
- What to do is nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?
E.g. H_{i} being a Gaussian $f\left(x \mid \mu_{i}, \sigma_{i}\right)$
\Rightarrow Given any pair or parameters $\left\{\mu_{i}, \sigma_{i}\right\}$ (i.e. $\forall H_{i}$), all values of x from $-\infty$ to $+\infty$ are possible.

Falsificationism? OK, but. ..

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)
- What to do is nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?
E.g. H_{i} being a Gaussian $f\left(x \mid \mu_{i}, \sigma_{i}\right)$
\Rightarrow Given any pair or parameters $\left\{\mu_{i}, \sigma_{i}\right\}$ (i.e. $\forall H_{i}$), all values of x from $-\infty$ to $+\infty$ are possible.
\Rightarrow Having observed any value of x, none of H_{i} can be, strictly speaking, falsified.

Falsificationism in action...

Obviously, this does not means that falsificationism never works,

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).
\Rightarrow Practically never in the experimental sciences!

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement). Certainly it works against itself:

- Science proceeds, in practice, rather differently: The natural development of Science shows that researches are carried along the directions that seem more credibile (and hopefully fruitful) at a given moment. A behaviour "179 degrees or so out of phase from Popper's idea that we make progress by falsificating theories" (Wilczek,
http://arxiv.org/abs/physics/0403115)

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement). Certainly it works against itself:

\Rightarrow logically speaking, falsificationism has to be considered ... falsified!

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests"

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests", in which the impossible is replaced by the improbable!

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests",
in which the impossible is replaced by the improbable!
But from the impossible to the improbable there is not just a question of quantity, but a question of quality.

Falsificationism and statistics

...then, statisticians have invented the "hypothesis tests", in which the impossible is replaced by the improbable!
But from the impossible to the improbable there is not just a question of quantity, but a question of quality.
This mechanism, logically flawed, is particularly dangerous because is deeply rooted in most scientists, due to education and custom, although not supported by logic.
\Rightarrow Basically responsible of all fake claims of discoveries in the past decades.
[/ am particularly worried about claims concerning our health, or the status of the planet, of which I have no control of the experimental data.]

In summary

A) if $C_{i} \xrightarrow{\longrightarrow} \quad E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')

In summary

A) if $C_{i} \nrightarrow \quad E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) \quad if $C_{i} \xrightarrow[\text { small probability }]{ } E$, and we observe E
$\Rightarrow C_{i}$ has small probability to be true "most likely false"

In summary

A) if $C_{i} \nrightarrow E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) if $C_{i} \underset{\text { small probability }}{ } E$, and we observe E
$\Rightarrow C_{i}$ has small probability to be true "most likely false"

In summary

A) if $C_{i} \nrightarrow \quad E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) if $C_{i} \xrightarrow[\text { small probability }]{ } E$, and we observe $E \quad \mathrm{NO}$
$\Rightarrow C_{i}$ has smail probability to be true
-"most likely false"
But it is behind the rational behind the statistical hypothesis tests!

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
& P(\text { Pos } \mid \mathrm{HIV})=100 \% \\
& P(\text { Pos } \mid \overline{\mathrm{HIV}})=0.2 \% \\
& P(\text { Neg } \mid \overline{\mathrm{HIV}})=99.8 \% \\
& H_{1}=\text { 'HIV' (Infected) } \quad E_{1}=\text { Positive } \\
& H_{2}={ }^{\prime} \overline{H I V}^{\prime} \text { (Not infected) } \\
& E_{2}=\text { Negative }
\end{aligned}
$$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
& P(\text { Pos } \mid \mathrm{HIV})=100 \% \\
& P(\text { Pos } \mid \overline{\mathrm{HIV})}=0.2 \% \\
& P(\text { Neg } \mid \overline{\mathrm{HIV})}=99.8 \% \\
&\left.H_{1}=\text { 'HIV' }^{\prime} \text { (Infected }\right) \\
& H_{2}={ }^{\prime} \mathrm{HIV}^{\prime} \text { (Not infected) } \longrightarrow E_{1}=\text { Positive }
\end{aligned}
$$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
& P(\text { Pos } \mid \mathrm{HIV})=100 \% \\
& P(\text { Pos } \mid \overline{\mathrm{HIV})}=0.2 \% \\
& P(\mathrm{Neg} \mid \overline{\mathrm{HIV}})=99.8 \% \\
&\left.H_{1}=\text { 'HIV' }^{\prime} \text { (Infected }\right) \\
& H_{2}={ }^{\prime} \overline{\mathrm{HIV}} \text { ' (Not infected) }
\end{aligned} \begin{aligned}
& \\
& E_{1}=\text { Positive }
\end{aligned}
$$

Result: $\Rightarrow \underline{\text { Positive }}$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
P(\text { Pos } \mid \text { HIV }) & =100 \% \\
P(\text { Pos } \mid \overline{\mathrm{HIV})}) & =0.2 \% \\
P(\text { Neg } \mid \overline{\mathrm{HIV}}) & =99.8 \%
\end{aligned}
$$

$? H_{1}=$ 'HIV' (Infected) $\longleftrightarrow E^{E_{1}=\text { Positive }}$
$? H_{2}=$ 'HIV' (Not infected)
$E_{2}=$ Negative
Result: $\Rightarrow \underline{\text { Positive }}$ HIV or not HIV?

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"?

What shall we conclude?

Being $P($ Pos $\mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"?

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"?

What shall we conclude?

Being $P($ Pos $\mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "Hypothesis $H_{1}=$ Healthy is ruled out with 99.8\% C.L."
?

What shall we conclude?

Being $P($ Pos $\mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an heathy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "Hypothesis $H_{1}=$ Healthy is ruled out with 99.8\% C.L."
? NO

Instead, $\quad P($ HIV \mid Pos, randomly chosen Italian $) \approx 45 \%$ Think about it (a crucial information is missing!)

What shall we conclude?

Being $P($ Pos $\mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an heathy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected" - "Hypothesis $H_{1}=$ Healthy is ruled out with 99.8\% C.L."

[^0] NO

Instead, $\quad P($ HIV \mid Pos, randomly chosen Italian $) \approx 45 \%$ \Rightarrow Serious mistake! (not just 99.8\% instead of 98.3\%)
$P(A \mid B) \leftrightarrow P(B \mid A)$
Pay attention no to arbitrary revert conditional probabilities:
In general $P(A \mid B) \neq P(B \mid A)$
$P(A \mid B) \leftrightarrow P(B \mid A)$
Pay attention no to arbitrary revert conditional probabilities:
In general $P(A \mid B) \neq P(B \mid A)$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
$P(A \mid B) \leftrightarrow P(B \mid A)$
Pay attention no to arbitrary revert conditional probabilities:
In general $P(A \mid B) \neq P(B \mid A)$
- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P($ Play \mid Win $) \quad[$ Lotto $]$
$P(A \mid B) \leftrightarrow P(B \mid A)$
Pay attention no to arbitrary revert conditional probabilities:

In general $P(A \mid B) \neq P(B \mid A)$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P($ Play \mid Win $) \quad[$ Lotto]
- $P($ Pregnant \mid Woman $) \neq P($ Woman \mid Pregnant $)$
$P(A \mid B) \leftrightarrow P(B \mid A)$
Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P$ (Play \mid Win $) \quad$ [Lotto]
- $P($ Pregnant \mid Woman $) \neq P($ Woman \mid Pregnant $)$

In particular

- A cause might produce a given effect with very low probability, and nevertheless could be the most probable cause of that effect, often the only one!

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What was the probability to give exactly that number?:

$$
\begin{aligned}
P\left(X=3.1416 \mid H_{0}\right) & =\int_{3.14155}^{3.14165} f_{\mathcal{G}}(x \mid \mu, \sigma) d x \\
& \approx f_{\mathcal{G}}(3.1416 \mid \mu, \sigma) \times \Delta x \\
& \approx f_{\mathcal{G}}(3.1416 \mid \mu, \sigma) \times 0.0001 \\
& \approx 39 \times 10^{-6}
\end{aligned}
$$

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

- Certainly NOT $\approx 39 \times 10^{-6}$;

‘Low probability’ events

Tipical values of statistical practice to reject a hypothesis are $5 \%, 1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

- Certainly NOT $\approx 39 \times 10^{-6}$;
- Indeed, it is exactly 1 , since H_{0} is the only cause which can produce that effect:

$$
\begin{aligned}
& P\left(X=3.1416 \mid H_{0}\right) \approx 39 \times 10^{-6} \\
& P\left(H_{0} \mid X=3.1416\right)=1 .
\end{aligned}
$$

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question. . .
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!)
'he' makes a new invention:

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!) 'he' makes a new invention:
\rightarrow what matter is not the probability of the X, but rather the probability of X or of any other less probable number (or a number farther than X from the expected value - the story is a bit longer...):

$$
P(X \geq 3.1416)=\int_{3.14155}^{+\infty} f_{\mathcal{G}}(x \mid \mu, \sigma) d x \approx 44 \%
$$

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!) 'he' makes a new invention:
\rightarrow what matter is not the probability of the X, but rather the probability of X or of any other less probable number (or a number farther than X from the expected value - the story is a bit longer...):

$$
P(X \geq 3.1416)\left[=P\left(X \geq x_{o b s}\right)\right] \Rightarrow \text { 'p-value' }
$$

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question. . .
\Rightarrow Magically the result 'becomes' rather probable! Why, we, silly, worried about it?
\Rightarrow The statisticians are happy...

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'techical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question. . .
\Rightarrow Magically the result 'becomes' rather probable! Why, we, silly, worried about it?
\Rightarrow The statisticians are happy... scientists and general public cheated...

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

Even if $P\left(x_{m} \mid H_{i}\right) \rightarrow 0$ (it depends on resolution)

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

In particular, the hypothesis H_{2} is (truly) falsified (impossible!), although it yields the largest ' p-value'

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

In particular, the hypothesis H_{2} is (truly) falsified (impossible!), although it yields the largest ' p-value', or 'probability of the tail(s)'

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

Which p-value?

'p-value' = 'probability of the tail(s)'

Which p-value?

'p-value' = 'probability of the tail(s)'
Of what?

Which p-value?.

'p-value' = 'probability of the tail(s)'

Of what?

\rightarrow the test variable (' θ ') is absolutely arbitrary:

$$
\begin{aligned}
\theta & =\theta(\mathbf{x}) \\
& \rightarrow f(\theta)[\text { p.d. }]
\end{aligned}
$$

Experiment: $\rightarrow \theta_{m i s}=\theta\left(\mathbf{x}_{m i s}\right)$

$$
\mathrm{p} \text {-value }=P\left(\theta \geq \theta_{\text {mis }}\right) \quad \text { ('one tail') }
$$

Which p-value?...

Which p-value?...

- far from exhaustive list,

Which p-value?...

- far from exhaustive list,
- with arbitrary variants:

Which p-value?

- far from exhaustive list,
- with arbitrary variants: \Rightarrow practitioner chose the one that provide the result they like better:
\rightarrow like if you go around until "someone agrees with you"

Which p-value?...

- far from exhaustive list,
- with arbitrary variants:
\Rightarrow practitioner chose the one that provide the result they like better:
\rightarrow like if you go around until "someone agrees with you"
- personal 'golden rule': "the more exotic is the name of the test, the less I believe the result", because l'm pretty shure that several 'normal' tests have been descarded in the meanwhile...

$\chi^{2} \ldots$ the mother of all p-values

Theory Vs experiment (bars: expectation uncertainty):

Very simple toy model. ${ }^{5}$

x

- True value of $y: 5$, independently of x (a.u.);
- Gaussian instrumental error with $\sigma=1$.

Probability of the data sample

$P=8.22 \times 10^{-33}$ is the probability of the 'configuration' of experimental points:

- obtained multiplying the probability of each point (independent measurements):

$$
\begin{gathered}
P=\prod_{i} P_{i} \\
P_{i}=\int_{y_{m_{i}}-\Delta y / 2}^{y_{m_{i}}+\Delta y / 2} f(y) d y
\end{gathered}
$$

where

- as seen, P_{i} depends on the 'resoluzion' Δy (instrumental 'discretization'):

$$
\rightarrow \text { we use } \quad \Delta y=\frac{1}{10} \sigma
$$

‘Distance’ Experiment-theory: χ^{2}

The construction of the χ^{2} is very popular (usually in first lab. courses - 'Fisichetta'):

$$
\begin{array}{rlr}
\chi^{2} & =\sum_{i}\left(\frac{y_{m_{i}}-y_{t h_{i}}}{\sigma_{i}}\right)^{2} \\
& \rightarrow \sum_{i}\left(\frac{y_{m_{i}}-y_{0}}{\sigma}\right)^{2} \\
\chi^{2} & \sim \Gamma(\nu / 2,1 / 2) & {[\rightarrow \nu=20]} \\
\mathrm{E}\left[\chi^{2}\right] & =\nu & {[\rightarrow 20]} \\
\operatorname{Var}\left[\chi^{2}\right] & =2 \nu & {[\rightarrow 40]} \\
\operatorname{Std}\left[\chi^{2}\right] & =\sqrt{2 \nu} & {[\rightarrow 6.3]} \\
\Rightarrow & & \chi^{2}=20 \pm 6
\end{array}
$$

Our expectations about χ^{2}

$$
\begin{array}{rll}
\mathrm{E}\left[\chi^{2}\right]= & \nu & {[\rightarrow 20]} \\
\operatorname{Std}\left[\chi^{2}\right]= & \sqrt{2 \nu} & {[\rightarrow 6.3]} \\
\Rightarrow & & \chi^{2}=20 \pm 6 \\
& & {[\text { mode: } 18]}
\end{array}
$$

Some examples

In the average.
(but someone could see the points forming a 'constellation'. . .)

Some examples

Too good?

Some examples

$\chi^{2}=52.6$, with a p-value $=0.93 \times \times 10^{-4}$
At limit?

Some examples

$\chi^{2}=52.6$, with a p-value $=0.93_{x} \times 10^{-4}$
At limit? Just come out at the first time (October 9, 13:01)
while(chi2.ym() < 38) source("chi2_1.R")

Some examples

Note: $\chi_{\text {mis }}^{2} 52.6$ is 5.1σ from its ${ }_{\mathrm{x}}$ expectation $\left[\frac{52.6-20}{\sqrt{40}}=5.1\right]$

Some examples

 but the p -value is comunicated as " 3.7σ ", referring to the probability of the tail above 3.7σ of an 'equivalent Gaussian'.

Some examples

 but the p -value is comunicated as " 3.7σ ", referring to the probability of the tail above 3.7σ of an 'equivalent Gaussian'.
(as if there were already not enough confusion...)

The art of χ^{2}

Sometimes the χ^{2} test does not give "the wished result"

Then it is calculated in the 'suspicious region'

The art of χ^{2}

Sometimes the χ^{2} test does not give "the wished result"

Then it is calculated in the 'suspicious region'
\Rightarrow If we add the two side points, becomes 22.2.
\Rightarrow But with 5 points we had got a p-value of 5×10^{-4}

p-value: what they are

p-value:

- Probability of the tail(s) of a 'test variable' (a "statistic"):

$$
\begin{aligned}
P\left(\theta \geq \theta_{\text {mis }}\right) & =\int_{\theta_{\text {mis }}}^{\infty} f\left(\theta \mid H_{0}\right) d \theta \\
P\left[\left(\theta \geq \theta_{\text {mis }}\right) \cap\left(\theta \leq\left(\theta^{c}\right)_{\text {mis }}\right)\right] & =1-\int_{\left(\theta^{c}\right)_{m i s}}^{\theta_{m i s}} f\left(\theta \mid H_{0}\right) d \theta
\end{aligned}
$$

- θ is an arbitrary function of the data.
- ... and often of a subsample of the data.
- $f\left(\theta \mid H_{0}\right)$ is obtained 'somehow', analitically, numerically, or by Monte Carlo methods.

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0} in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0} in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

\Rightarrow BUT the p -value do not provide this:

$$
P\left(\theta \geq \theta_{m i s} \mid H_{0}\right) \nLeftarrow P\left(H_{0} \mid \theta_{m i s}\right)
$$

\Rightarrow Although they are erroneously confused with this!

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0} in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

Tight seat belts!

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderst

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderst

1. The p-value is not the probability that the null hypothesis is true.

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderst

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderst

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...
2. The p-value is not the probability that a finding is "merely a fluke."...

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderst

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...
2. The p-value is not the probability that a finding is "merely a fluke."...
3. The p-value is not the probability of falsely rejecting the null hypothesis.
4. ...

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshould, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshould, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006% chance of being wrong, the journal said." (USA Today, 2 July 2012).

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshould, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006% chance of being wrong, the journal said." (USA Today, 2 July 2012).
- Etc. etc. \Rightarrow Google
- "higgs cern 0.00006 chance": $\approx 1.6 \times 10^{4}$ results

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshould, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006% chance of being wrong, the journal said." (USA Today, 2 July 2012).
- Etc. etc. \Rightarrow Google
- "higgs cern 0.00006 chance": $\approx 1.6 \times 10^{4}$ results
- "higgs cern ' 99.99994% "': $\approx 1.5 \times 10^{6}$ results
http://www.romal.infn.it/~dagos/badmath/\#added

Probabilistic reasoning

Are we then really stuck?

Probabilistic reasoning

Are we then really stuck?
Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game.

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game. ??
But weren't already Gaussians, χ^{2}, σ 's, etc.?

Probabilistic reasoning

Are we then really stuck?
Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game. ??
But weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game. ??
But weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:
probability of hypotheses.

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game. ??
But weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:

probability of hypotheses.

- 'Mismatch' between our natural way of thinking and the statistics theory:
- $P\left(H_{0} \mid\right.$ data $) \longleftrightarrow P\left(\theta \geq \theta_{\text {mis }} \mid H_{0}\right)$

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game. ??
But weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:
- It is enough get rid of '900 statisticians (the 'frequentists') and reload 'serious guys',
\rightarrow restart from Laplace, together with Gauss, Bayes, etc.,

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
"The usual touchstone, whether that which someone asserts is merely his persuasion - or at least his subjective conviction, that is, his firm belief - is betting. It often happens that someone propounds his views with such positive and uncompromising assurance that he seems to have entirely set aside all thought of possible error. A bet disconcerts him. Sometimes it turns out that he has a conviction which can be estimated at a value of one ducat, but not of ten. For he is very willing to venture one ducat, but when it is a question of ten he becomes aware, as he had not previously been, that it may very well be that he is in error." (Kant)

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
- "the more I believe, more money I can bet"

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
- "the more I believe, more money I can bet"
- "my degree of belief depends on the information I have got (stored in my brain!)"

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
- "the more I believe, more money I can bet"
- "my degree of belief depends on the information I have got (stored in my brain!)"
- "it seems natural - I would be terrified by the contrary! that other brains store different 'information'" ['subjective nature of probability']

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
- "the more I believe, more money I can bet"
- "my degree of belief depends on the information I have got (stored in my brain!)"
- "it seems natural - I would be terrified by the contrary! that other brains store different 'information'" ['subjective nature of probability']
- "I am rationally ready to change my opinion"

Beliefs and bets

Recover the natural concept of probability

- "how much I am confident in something"
- "how much I believe something"
- "the more I believe, more money I can bet"
- "my degree of belief depends on the information I have got (stored in my brain!)"
- "it seems natural - I would be terrified by the contrary! that other brains store different 'information'" ['subjective nature of probability']
- "I am rationally ready to change my opinion"
- ". . . but more unlikelly hypotheses initially were, the stronger evidence is needed, possible provided (independently) by several persons I trust"

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause \{given that event\}.

$$
P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right)
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause \{given that event\}. The probability of the existence of any one of these causes \{given the event\} is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes.

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right)}
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause \{given that event\}. The probability of the existence of any one of these causes \{given the event\} is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally probable a priory, it is necessary, instead of the probability of the event given each cause, to use the product of this probability and the possibility of the cause itself."

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle (*) of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
(*) In his "Philosophical essay" Laplace calls 'principles' the 'fondamental rules'.

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle (*) of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
(*) In his "Philosophical essay" Laplace calls 'principles' the 'fondamental rules'.

Note: denominator is just a normalization factor.

$$
\Rightarrow \quad P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right) P\left(C_{i}\right)
$$

Most convenient way to remember Bayes theorem

Laplace's teaching

$$
\frac{P\left(H_{0} \mid \text { data }\right)}{P\left(H_{1} \mid \text { data }\right)}=\frac{P\left(\text { dati } \mid H_{0}\right)}{P\left(\text { dati } \mid H_{1}\right)} \times \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

- We should possible use the data, rather then the test variables ' θ ' (χ^{2} etc);
[although in some case 'sufficient summaries' exist]

Laplace's teaching

$$
\frac{P\left(H_{0} \mid \text { data }\right)}{P\left(H_{1} \mid \text { data }\right)}=\frac{P\left(\text { dati } \mid H_{0}\right)}{P\left(\text { dati } \mid H_{1}\right)} \times \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

- We should possible use the data, rather then the test variables ' θ ' (χ^{2} etc); [although in some case 'sufficient summaries' exist]
- At least two hypotheses are needed!

Laplace's teaching

$$
\frac{P\left(H_{0} \mid \text { data }\right)}{P\left(H_{1} \mid \text { data }\right)}=\frac{P\left(\text { dati } \mid H_{0}\right)}{P\left(\text { dati } \mid H_{1}\right)} \times \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

- We should possible use the data, rather then the test variables ' θ ' (χ^{2} etc); [although in some case 'sufficient summaries' exist]
- At least two hypotheses are needed!
- ... and how they appear initially likelly!

Laplace's teaching

$$
\frac{P\left(H_{0} \mid \text { data }\right)}{P\left(H_{1} \mid \text { data }\right)}=\frac{P\left(\text { dati } \mid H_{0}\right)}{P\left(\text { dati } \mid H_{1}\right)} \times \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

- We should possible use the data, rather then the test variables ' θ ' (χ^{2} etc); [although in some case 'sufficient summaries' exist]
- At least two hypotheses are needed!
- ... and how they appear initially likelly!
- If $P\left(\right.$ data $\left.\mid H_{i}\right)=0$, it follows $P\left(H_{i} \mid\right.$ data $)=0$:
\Rightarrow falsification (the 'serious' one) is a corollary of the theorem, rather than a principle.

Laplace's teaching

$$
\frac{P\left(H_{0} \mid \text { data }\right)}{P\left(H_{1} \mid \text { data }\right)}=\frac{P\left(\text { dati } \mid H_{0}\right)}{P\left(\text { dati } \mid H_{1}\right)} \times \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

- We should possible use the data, rather then the test variables ' θ ' (χ^{2} etc); [although in some case 'sufficient summaries' exist]
- At least two hypotheses are needed!
- ... and how they appear initially likelly!
- If $P\left(\right.$ data $\left.\mid H_{i}\right)=0$, it follows $P\left(H_{i} \mid\right.$ data $)=0$: \Rightarrow falsification (the 'serious' one) is a corollary of the theorem, rather than a principle.
- There is no conceptual problem with the fact that $P\left(\right.$ dati $\left.\mid H_{1}\right) \rightarrow 0$ (e.g. 10^{-37}), provided the ratio $P\left(\right.$ dati $\left.\mid H_{0}\right) / P\left(\right.$ dati $\left.\mid H_{1}\right)$ is not undefined.

But statistical tests do work!

Someone would object that p-values and, in general, 'hypothesis tests' usually do work!

But statistical tests do work!

Someone would object that p-values and, in general, 'hypothesis tests' usually do work!

- Certainly! I agree!

As it usually work overtakes in curve on remote mountain road!

But statistical tests do work!

Someone would object that p-values and, in general, 'hypothesis tests' usually do work!

- Certainly! I agree!

As it usually work overtakes in curve on remote mountain road!

- But now we are also able to explain the reason.

But statistical tests do work!

Why should the observation of $\theta_{\text {mis }}$ should diminuish our confidence on H_{0} ?

But statistical tests do work!

Because often we give some chance to a possible alternative hypothesis H_{1}, even if we are not able to exactly formulate it.

But statistical tests do work!

Indeed, what really matters is not the area to the right of $\theta_{\text {mis }}$. What matters is the ratio of $f\left(\theta_{\text {mis }} \mid H_{1}\right)$ to $f\left(\theta_{\text {mis }} \mid H_{0}\right)$! \Rightarrow to a 'small' area it corresponds a 'small' $f\left(\theta_{m i s} \mid H_{0}\right)$.

But statistical tests do work!

But is the alternative hypothesis H_{1} is unconcievable, or hardly believable, the 'smalleness' of the area is irrelevant

Sensational announcements Vs sound Physics

At this point it is rather clear why most physicists disbelieved the 2011 anouncements by CDF and Opera

Sensational announcements Vs sound Physics

At this point it is rather clear why most physicists disbelieved the 2011 anouncements by CDF and Opera

As it was quite obvious that what the LHC experiments were glipsing at the end of 2011 was the 30 years searched for Higgs boson

Sensational announcements Vs sound Physics

At this point it is rather clear why most physicists disbelieved the 2011 anouncements by CDF and Opera

As it was quite obvious that what the LHC experiments were glipsing at the end of 2011 was the 30 years searched for Higgs boson

Sensational announcements Vs sound Physics

At this point it is rather clear why most physicists disbelieved the 2011 anouncements by CDF and Opera

As it was quite obvious that what the LHC experiments were glipsing at the end of 2011 was the 30 years searched for Higgs boson (Also becaause in that case the great discovery would have been not to find it!)

Sensational announcements Vs sound Physics

At this point it is rather clear why most physicists disbelieved the 2011 anouncements by CDF and Opera

As it was quite obvious that what the LHC experiments were glipsing at the end of 2011 was the 30 years searched for Higgs boson (Also becaause in that case the great discovery would have been not to find it!)
Don't get confused by sigma's and 'strange significances' that do not tell you how how much to believe in the claim.

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
"We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
"We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"
???

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
> "We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

This statement implies that our confidence that the $\approx 126 \mathrm{GeV}$ 'excess' is a new particle is due from the 5 sigmas alone.

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
> "We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

This statement implies that our confidence that the $\approx 126 \mathrm{GeV}$ 'excess' is a new particle is due from the 5 sigmas alone.

But we have just seen that this is not logically defendable!

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
> "We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

This statement implies that our confidence that the $\approx 126 \mathrm{GeV}$ 'excess' is a new particle is due from the 5 sigmas alone.

But we have just seen that this is not logically defendable!
\rightarrow The excess is surely a particle only if it is the Higgs!

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
> "We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

This statement implies that our confidence that the $\approx 126 \mathrm{GeV}$ 'excess' is a new particle is due from the 5 sigmas alone.

It is a question of Physics not (only) of statistics:

- success of standard model;
- radiative corrections
(the diagrams entering R.C. are essentially the same the produce the Higgs in the final state!)

"Is the 'new particle' the Higgs?"

We have often listened in the past year the following statement:
> "We have discovered at CERN a new particle. We have to understand if it is the Higgs boson"

This statement implies that our confidence that the $\approx 126 \mathrm{GeV}$ 'excess' is a new particle is due from the 5 sigmas alone.

It is a question of Physics not (only) of statistics:

- success of standard model;
- radiative corrections (the diagrams entering R.C. are essentially the same the produce the Higgs in the final state!)
- Physics is something SERIOUS! (not a statistician's toy)

Conclusions of Part 1

Philip Ball (Guardian, 23 dicembre 2011)
(http://www.guardian.co.uk/commentisfree/2011/de
"So D'Agostini recommends that, instead of heeding impressive-sounding statistics, we should ask what scientists actually believe. Better, we should find out if they had put money on it - and how much. After all, that is a tactic endorsed by none other than Kant."

Conclusions of Part 1

Philip Ball (Guardian, 23 dicembre 2011)
(http://www.guardian.co.uk/commentisfree/2011/de
"So D'Agostini recommends that, instead of heeding impressive-sounding statistics, we should ask what scientists actually believe. Better, we should find out if they had put money on it - and how much. After all, that is a tactic endorsed by none other than Kant."
Which is why l'm only being scientific when I say screw the sigmas: I'd place a tenner (but not a ton) on the Higgs, while offering to join Jim Al-Khalili in eating my shorts if neutrinos defy relativity."

Conclusions of Part 1

Philip Ball (Guardian, 23 dicembre 2011)
(http://www.guardian.co.uk/commentisfree/2011/de
"So D'Agostini recommends that, instead of heeding impressive-sounding statistics, we should ask what scientists actually believe. Better, we should find out if they had put money on it - and how much. After all, that is a tactic endorsed by none other than Kant."
Which is why I'm only being scientific when I say screw the sigmas: l'd place a tenner (but not a ton) on the Higgs, while offering to join Jim Al-Khalili in eating my shorts if neutrinos defy relativity."
\Rightarrow He has finally won both bets!

Physics

continuous Hypotheses discrete
(*) A quantity might be meaningful only within a theory/model

From past to future

Task of physicists:

- Describe/understand the physical world
\Rightarrow inference of laws and their parameters
- Predict observations
\Rightarrow forecasting

From past to future

\Rightarrow Uncertainty:

1. Given the past observations, in general we are not sure about the theory parameters (and/or the theory itself)
2. Even if we were sure about theory and parameters, there could be internal (e.g. Q.M.) or external effects (initial/boundary conditions, 'errors', etc) that make the forecasting uncertain.

Deep source of uncertainty

Uncertainty:

Theory —? \longrightarrow Future observations
 Past observations - ? \longrightarrow Theory
 Theory $-? \longrightarrow$ Future observations

Deep source of uncertainty

Uncertainty:

Theory —? \longrightarrow Future observations
 Past observations - ? \longrightarrow Theory
 Theory —? \longrightarrow Future observations
 \Longrightarrow Uncertainty about causal connections
 CAUSE \Longleftrightarrow EFFECT

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

$$
\mathbf{E}_{\mathbf{2}} \Rightarrow\left\{C_{1}, C_{2}, C_{3}\right\} ?
$$

The "essential problem" of the Sciences

"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.

The "essential problem" of the Sciences

"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.
I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method."
(H. Poincaré - Science and Hypothesis)

The "essential problem" of the Sciences

"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.
I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method."
(H. Poincaré - Science and Hypothesis)

Why physics students are not taught how to tackle this kind of problems?

From 'true value' to observations

Given μ (exactly known) we are uncertain about x

From 'true value' to observations

Uncertain μ

Uncertainty about μ makes us more uncertain about x

Uncertain μ

The observed data is certain: \rightarrow 'true value' uncertain.

Where does the observed value of x comes from?

We are now uncertain about μ, given x.

Note the symmetry in reasoning.

A very simple experiment

Let's make an experiment

A very simple experiment

Let's make an experiment

- Here
- Now

A very simple experiment

Let's make an experiment

- Here
- Now

For simplicity

- μ can assume only six possibilities:

$$
0,1, \ldots, 5
$$

- x is binary:

$$
0,1
$$

[(1,2); Black/White; Yes/Not; ...]

A very simple experiment

Let's make an experiment

- Here
- Now

For simplicity

- μ can assume only six possibilities:

$$
0,1, \ldots, 5
$$

- x is binary:

$$
0,1
$$

[(1,2); Black/White; Yes/Not; ...]
\Rightarrow Later we shall make μ continous.

Which box? Which ball?

 H_{0}
 H_{1}
 H_{2}
 H_{3}
 H_{4} H_{5}

Let us take randomly one of the boxes.

Which box? Which ball?

- - - - -	- - - -	- - - ○	- - OOO	- 0000	00000
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the most important of which correspond to the following questions:
(a) Which box have we chosen, $H_{0}, H_{1}, \ldots, H_{5}$?
(b) If we extract randomly a ball from the chosen box, will we observe a white ($E_{W} \equiv E_{1}$) or black ($E_{B} \equiv E_{2}$) ball?

Our certainties:

$$
\begin{aligned}
\cup_{j=0}^{5} H_{j} & =\Omega \\
\cup_{i=1}^{2} E_{i} & =\Omega .
\end{aligned}
$$

Which box? Which ball?

 H_{0}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}

Let us take randomly one of the boxes.

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation

Which box? Which ball?

-७せ७○	- - - -	- - - ○	- - 00	- 0000	00000
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

Let us take randomly one of the boxes.

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation
- Can we do it quantitatively, in an 'objective way'?

Which box? Which ball?

-७せ७○	- - - -	- - - ○	- - 00	- 0000	00000
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

Let us take randomly one of the boxes.

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation
- Can we do it quantitatively, in an 'objective way'?
- And after a sequence of extractions?

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

This toy experiment is conceptually very close to what we do in Physics
\Rightarrow try to guess what we cannot see (the electron mass, a branching ratio, etc)
... from what we can see (somehow) with our senses.
The rule of the game is that we are not allowed to watch inside the box! (As we cannot open an electron and read its properties, unlike we read the MAC address of a PC interface.)

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes,

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is the probability?

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is the probability? Certainly not in the box!

Subjective nature of probability

"Since the knowledge may be different with different persons

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times,

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence,

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"
(Schrödinger, 1947)

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"
(Schrödinger, 1947)
Probability depends on the status of information of the subject who evaluates it.

Probability is always conditional probability

"Thus whenever we speak loosely of 'the probability of an event', it is always to be understood: probability with regard to a certain given state of knowledge"

Probability is always conditional probability

"Thus whenever we speak loosely of 'the probability of an event', it is always to be understood: probability with regard to a certain given state of knowledge"
(Schrödinger, 1947)

Probability is always conditional probability

"Thus whenever we speak loosely of 'the probability of an event', it is always to be understood: probability with regard to a certain given state of knowledge"
 (Schrödinger, 1947)

$$
P(E) \quad \longrightarrow P\left(E \mid I_{s}\right)
$$

where I_{s} is the information available to subject s.

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true...

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true... the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"

(Schrödinger, 1947)

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true... the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
\Rightarrow How much we believe something

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true... the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
\rightarrow 'Degree of belief' \leftarrow

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?
"The usual touchstone, whether that which someone asserts is merely his persuasion - or at least his subjective conviction, that is, his firm belief - is betting. It often happens that someone propounds his views with such positive and uncompromising assurance that he seems to have entirely set aside all thought of possible error. A bet disconcerts him. Sometimes it turns out that he has a conviction which can be estimated at a value of one ducat, but not of ten. For he is very willing to venture one ducat, but when it is a question of ten he becomes aware, as he had not previously been, that it may very well be that he is in error." (Kant)

Beliefs and＇coherent＇bets

Remarks：

－Subjective does not mean arbitrary！
－How to force people to assess how much they are confident on something？

11／07 20：30							
凹．VOJVODINA－HIBERNIANS	1，05	10，00	25，00	3，10	1，30	2，55	1，42
4 GLENTORAN－KR REYKJAV	4，75	3，50	1，65	1，90	1，75	1，75	1，90
4 HONV BUDAP．－CELIK NIKS．	1，15	7，00	12，00	2，80	1，35	2，00	1，70
凹．GERMANIA－OLANDA	1，15	6，50	13，00	2，50	1，45	2，20	1，57
11／07 20：45							
凹 S PATRICKS－ZALGIRIS	1，90	3，40	3，50	1，75	1，90	1，73	1，95
11／07 21：00							
凹IBERTAS－SARAJEVO	22，00	8，00	1，08	3，20	1，28	2，25	1，55
11／07 22：00							
凹．STJARNAN－HAFNARFJOR	2，65	3，40	2，35	2，15	1，60	1，50	2，35

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?
, Coherent bet:
- you state the odds according on your beliefs;
- somebody else will choose the direction of the bet.

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?
, Coherent bet:
- you state the odds according on your beliefs;
- somebody else will choose the direction of the bet.
"His [Bouvard] calculations give him the mass of Saturn as 3,512 th part of that of the sun. Applying my probabilistic formulae to these observations, I find that the odds are 11,000 to 1 that the error in this result is not a hundredth of its value." (Laplace)

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?
, Coherent bet:
- you state the odds according on your beliefs;
- somebody else will choose the direction of the bet.
"His [Bouvard] calculations give him the mass of Saturn as 3,512 th part of that of the sun. Applying my probabilistic formulae to these observations, I find that the odds are 11,000 to 1 that the error in this result is not a hundredth of its value." (Laplace)

Beliefs and 'coherent' bets

Remarks:

- Subjective does not mean arbitrary!
- How to force people to assess how much they are confident on something?
, Coherent bet:
- you state the odds according on your beliefs;
- somebody else will choose the direction of the bet.
"His [Bouvard] calculations give him the mass of Saturn as 3,512 th part of that of the sun. Applying my probabilistic formulae to these observations, I find that the odds are 11,000 to 1 that the error in this result is not a hundredth of its value." (Laplace)
$\rightarrow P\left(3477 \leq M_{\text {Sun }} / M_{\text {Sat }} \leq 3547 \mid I(\right.$ Laplace $\left.)\right)=99.99 \%$

‘C.L.’ Vs Degree of Confidence

Is a 'conventional' 95\% C.L. lower/upper bound a 19 to 1 bet?

‘C.L.’ Vs Degree of Confidence

Is a 'conventional' 95\% C.L. lower/upper bound a 19 to 1 bet?

NO!

‘C.L.' Vs Degree of Confidence

Is a 'conventional’ 95\% C.L. lower/upper bound a 19 to 1 bet?

NO!

- It does not imply one has to be 95% confident on something!
- If you do so you are going to make a bad bet!

‘C.L.' Vs Degree of Confidence

Is a 'conventional' 95\% C.L. lower/upper bound a 19 to 1 bet?

NO!

- It does not imply one has to be 95% confident on something!
- If you do so you are going to make a bad bet!

For more on the subject:
http://arxiv.org/abs/1112.3620
http://www.romal.infn.it/~dagos/badmath/\#added

Mathematics of beliefs

The good news:

The basic laws of degrees of belief are the same we get from the inventory of favorable and possible cases, or from events occurred in the past.
[Details skipped...]

Basic rules of probability

1. $0 \leq P(A \mid I) \leq 1$
2. $\quad P(\Omega \mid I)=1$
3. $\quad P(A \cup B \mid I)=P(A \mid I)+P(B \mid I) \quad[$ if $P(A \cap B \mid I)=\emptyset]$
4. $\quad P(A \cap B \mid I)=P(A \mid B, I) \cdot P(B \mid I)=P(B \mid A, I) \cdot P(A \mid I)$

Remember that probability is always conditional probability!
I is the background condition (related to information ' I_{s}^{\prime})
\rightarrow usually implicit (we only care on 're-conditioning')

Basic rules of probability

1. $0 \leq P(A \mid I) \leq 1$
2. $\quad P(\Omega \mid I)=1$
3. $P(A \cup B \mid I)=P(A \mid I)+P(B \mid I) \quad[$ if $P(A \cap B \mid I)=\emptyset]$
4. $\quad P(A \cap B \mid I)=P(A \mid B, I) \cdot P(B \mid I)=P(B \mid A, I) \cdot P(A \mid I)$

Remember that probability is always conditional probability! I is the background condition (related to information ' I_{s}^{\prime}) \rightarrow usually implicit (we only care on 're-conditioning')

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)

Mathematics of beliefs

An even better news:

The fourth basic rule can be fully exploided!

Mathematics of beliefs

An even better news:

The fourth basic rule can be fully exploided!

(Liberated by a curious ideology that forbits its use)

A simple, powerful formula

A simple, powerful formula

$$
P(A|B| I) P(B \mid I)=P(B \mid A, I) P(A \mid I)
$$

A simple, powerful formula

Take the courage to use
 G. D'Agostini, Probabilistic Inferenge (fattingen, 11 July 2013) - (C) G. D'Agostini - p. 74

A simple, powerful formula

Telling it with Gauss' words

A quote from the Princeps Mathematicorum (Prince of Mathematicians) is a must in this town and in this place.

Telling it with Gauss' words

A quote from the Princeps Mathematicorum (Prince of Mathematicians) is a must in this town and in this place.

$$
P\left(C_{i} \mid \text { data }\right)=\frac{P\left(\text { data } \mid C_{i}\right)}{P(\text { data })} P_{0}\left(C_{i}\right)
$$

Telling it with Gauss' words

A quote from the Princeps Mathematicorum (Prince of Mathematicians) is a must in this town and in this place.

$$
P\left(C_{i} \mid \text { data }\right)=\frac{P\left(\text { data } \mid C_{i}\right)}{P(\text { data })} P_{0}\left(C_{i}\right)
$$

"post illa observationes" "ante illa observationes"
(Gauss)

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

$$
\frac{P\left(C_{i} \mid E, I\right)}{P\left(C_{i} \mid I\right)}=\frac{P\left(E \mid C_{i}, I\right)}{P(E \mid I)}
$$

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

$$
\begin{aligned}
\frac{P\left(C_{i} \mid E, I\right)}{P\left(C_{i} \mid I\right)} & =\frac{P\left(E \mid C_{i}, I\right)}{P(E \mid I)} \\
P\left(C_{i} \mid E, I\right) & =\frac{P\left(E \mid C_{j}, I\right)}{P(E \mid I)} P\left(C_{i} \mid I\right)
\end{aligned}
$$

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

$$
\begin{aligned}
\frac{P\left(C_{i} \mid E, I\right)}{P\left(C_{i} \mid I\right)} & =\frac{P\left(E \mid C_{i}, I\right)}{P(E \mid I)} \\
P\left(C_{i} \mid E, I\right) & =\frac{P\left(E \mid C_{j}, I\right)}{P(E \mid I)} P\left(C_{i} \mid I\right) \\
P\left(C_{i}|E| I\right) & =\frac{P\left(E\left|C_{i}\right| I\right) \cdot P\left(C_{i} \mid I\right)}{\sum_{k} P\left(E \mid C_{k}, I\right) \cdot P\left(C_{k} \mid I\right)}
\end{aligned}
$$

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

$$
\begin{aligned}
\frac{P\left(C_{i} \mid E, I\right)}{P\left(C_{i} \mid I\right)} & =\frac{P\left(E \mid C_{i}, I\right)}{P(E \mid I)} \\
P\left(C_{i} \mid E, I\right) & =\frac{P\left(E \mid C_{j}, I\right)}{P(E \mid I)} P\left(C_{i} \mid I\right) \\
P\left(C_{i}|E| I\right) & =\frac{P\left(E\left|C_{i}\right| I\right) \cdot P\left(C_{i} \mid I\right)}{\sum_{k} P\left(E \mid C_{k}, I\right) \cdot P\left(C_{k} \mid I\right)} \\
P\left(C_{i} \mid E, I\right) & \propto P\left(E \mid C_{i}, I\right) \cdot P\left(C_{i} \mid I\right)
\end{aligned}
$$

Bayes formulae

The essence is all contained in the fourth basic rule of probability theory:

$$
\begin{aligned}
\frac{P\left(C_{i} \mid E, I\right)}{P\left(C_{i} \mid I\right)} & =\frac{P\left(E \mid C_{i}, I\right)}{P(E \mid I)} \\
P\left(C_{i} \mid E, I\right) & =\frac{P\left(E \mid C_{j}, I\right)}{P(E \mid I)} P\left(C_{i} \mid I\right) \\
P\left(C_{i}|E| I\right) & =\frac{P\left(E\left|C_{i}\right| I\right) \cdot P\left(C_{i} \mid I\right)}{\sum_{k} P\left(E \mid C_{k}, I\right) \cdot P\left(C_{k} \mid I\right)} \\
P\left(C_{i} \mid E, I\right) & \propto P\left(E \mid C_{i}, I\right) \cdot P\left(C_{i} \mid I\right)
\end{aligned}
$$

or even (my preferred form to grasp its meaning):

$$
\frac{P\left(C_{i}|E| I\right)}{P\left(C_{j}|E| I\right)}=\frac{P\left(E\left|C_{i}\right| I\right)}{P\left(E\left|C_{j}\right| I\right)} \cdot \frac{P\left(C_{i} \mid I\right)}{P\left(C_{j} \mid I\right)}
$$

Bayesian parametric inference

If we want to infer a continuous parameter p from a set of data
\rightarrow straghtforwad extension to probability density functions (pdf)

Bayesian parametric inference

If we want to infer a continuous parameter p from a set of data
\rightarrow straghtforwad extension to probability density functions (pdf)
$f(p \mid$ data,$I) \propto f($ data $\mid p, I) \cdot f(p \mid I)$

Bayesian parametric inference

If we want to infer a continuous parameter p from a set of data
\rightarrow straghtforwad extension to probability density functions (pdf)
$f(p \mid$ data,$I) \propto f($ data $\mid p, I) \cdot f(p \mid I)$
$f(p \mid$ data,$I)=\frac{f(\text { data } \mid p, I) \cdot f(p \mid I)}{\int_{p} f(\text { data } \mid p, I) \cdot f(p \mid I) d p}$

Bayesian parametric inference

If we want to infer a continuous parameter p from a set of data
\rightarrow straghtforwad extension to probability density functions (pdf)
$f(p \mid$ data,$I) \propto f($ data $\mid p, I) \cdot f(p \mid I)$
$f(p \mid$ data,$I)=\frac{f(\text { data } \mid p, I) \cdot f(p \mid I)}{\int_{p} f(\text { data } \mid p, I) \cdot f(p \mid I) d p}$
\Rightarrow Several examples tomorrow by Lorenzo

Application to the six box problem

Remind:

- $E_{1}=$ White
- $E_{2}=$ Black

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} \mid I\right)} P\left(H_{j} \mid I\right)
$$

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} I I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} I I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$
- $P\left(E_{i} \mid I\right)=1 / 2$

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} \mid I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$
- $P\left(E_{i} \mid I\right)=1 / 2$
- $P\left(E_{i} \mid H_{j}, I\right)$:

$$
\begin{aligned}
& P\left(E_{1} \mid H_{j}, I\right)=j / 5 \\
& P\left(E_{2} \mid H_{j}, I\right)=(5-j) / 5
\end{aligned}
$$

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} I I\right)} P\left(H_{j} \mid I\right)
$$

$\xrightarrow{\rightarrow} P\left(H_{j} \mid I\right)=1 / 6$

- $P\left(E_{i} \mid I\right)=1 / 2$
- $P\left(E_{i} \mid H_{j}, I\right)$:

$$
\begin{aligned}
& P\left(E_{1} \mid H_{j}, I\right)=j / 5 \\
& P\left(E_{2} \mid H_{j}, I\right)=(5-j) / 5
\end{aligned}
$$

Our prior belief about H_{j}

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} \mid I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$
- $P\left(E_{i} \mid I\right)=1 / 2$
${ }^{2} P\left(E_{i} \mid H_{j}, I\right)$:

$$
\begin{aligned}
& P\left(E_{1} \mid H_{j}, I\right)=j / 5 \\
& P\left(E_{2} \mid H_{j}, I\right)=(5-j) / 5
\end{aligned}
$$

Probability of E_{i} under a well defined hypothesis H_{j} It corresponds to the 'response of the apparatus in measurements.
\rightarrow likelihood (traditional, rather confusing name!)

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} \mid I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$
$\xrightarrow{\rightarrow} P\left(E_{i} \mid I\right)=1 / 2$
$P\left(E_{i} \mid H_{j}, I\right)$:

$$
\begin{aligned}
& P\left(E_{1} \mid H_{j}, I\right)=j / 5 \\
& P\left(E_{2} \mid H_{j}, I\right)=(5-j) / 5
\end{aligned}
$$

Probability of E_{i} taking account all possible H_{j}
\rightarrow How much we are confident that E_{i} will occur.

Collecting the pieces of information we need

Our tool:

$$
P\left(H_{j} \mid E_{i}, I\right)=\frac{P\left(E_{i} \mid H_{j}, I\right)}{P\left(E_{i} I I\right)} P\left(H_{j} \mid I\right)
$$

- $P\left(H_{j} \mid I\right)=1 / 6$
$\xrightarrow{\rightarrow} P\left(E_{i} \mid I\right)=1 / 2$
$P\left(E_{i} \mid H_{j}, I\right)$:

$$
\begin{aligned}
& P\left(E_{1} \mid H_{j}, I\right)=j / 5 \\
& P\left(E_{2} \mid H_{j}, I\right)=(5-j) / 5
\end{aligned}
$$

Probability of E_{i} taking account all possible H_{j}
\rightarrow How much we are confident that E_{i} will occur.
We can rewrite it as

$$
P\left(E_{i} \mid I\right)=\sum_{j} P\left(E_{i} \mid H_{j}, I\right) \cdot P\left(H_{j} \mid I\right)
$$

Now that we have set up our formalism, let's play a little

- analyse real data
- some simulations

Then

- $H_{j} \longleftrightarrow j \longleftrightarrow p_{j}$
- extending p to a continuum:
\Rightarrow Bayes' billiard
(prototype for all questions related to efficiencies, branching ratios)
- On the meaning of p

Which box? Which ball?

Inferential/forecasting history:

1. $k=0$
$P_{0}\left(H_{j}\right)=P\left(H_{j} \mid I_{0}\right)$ (priors)
2. begin loop:
$k=k+1$
$\Rightarrow E^{(k)}$
(k-th extraction)
3. $P_{k}\left(H_{j} \mid I_{k}\right) \propto P\left(E^{(k)} \mid H_{j}\right) \times P_{k-1}\left(H_{j} \mid I_{k}\right)$

$$
P_{k}\left(E_{i} \mid I_{k}\right)=\sum_{j} P\left(E_{i} \mid H_{j}\right) \cdot P_{k}\left(H_{j} \mid I_{k}\right)
$$

4. \rightarrow go to 2

Which box? Which ball?

Inferential/forecasting history:

1. $k=0$
$P_{0}\left(H_{j}\right)=P\left(H_{j} \mid I_{0}\right)$ (priors)
2. begin loop:
$k=k+1$
$\Rightarrow E^{(k)}$
(k-th extraction)
3. $P_{k}\left(H_{j} \mid I_{k}\right) \propto P\left(E^{(k)} \mid H_{j}\right) \times P_{k-1}\left(H_{j} \mid I_{k}\right)$
$P_{k}\left(E_{i} \mid I_{k}\right)=\sum_{j} P\left(E_{i} \mid H_{j}\right) \cdot P_{k}\left(H_{j} \mid I_{k}\right)$
4. \rightarrow go to 2

Bayes' billiard

This is the original problem in the theory of chances solved by Thomas Bayes in late '700:

- imagine you roll a ball at random on a billiard;
- you mark the relative position of the ball along the billiard's length (l / L) and remove the ball
- then you roll at random other balls
- write down if it stopped left or right of the first ball;
- remove it and go on with n balls.
- Somebody has to guess the position of the first ball knowing only how mane balls stopped left and how many stoppe right

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation: Imagine a sequence $\{S, S, F, S, \ldots\}\left[f_{0}\right.$ is uniform]:

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation: Imagine a sequence $\{S, S, F, S, \ldots\}\left[f_{0}\right.$ is uniform]:

$$
f(p \mid S) \propto f(S \mid p)=p
$$

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation: Imagine a sequence $\{S, S, F, S, \ldots\}\left[f_{0}\right.$ is uniform]:

$$
\begin{aligned}
f(p \mid S) & \propto f(S \mid p)=p \\
f(p \mid S, S) & \propto f(S \mid p) \cdot f(p \mid S)=p^{2}
\end{aligned}
$$

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation: Imagine a sequence $\{S, S, F, S, \ldots\}\left[f_{0}\right.$ is uniform]:

$$
\begin{aligned}
f(p \mid S) & \propto f(S \mid p)=p \\
f(p \mid S, S) & \propto f(S \mid p) \cdot f(p \mid S)=p^{2} \\
f(p \mid S, S, F) & \propto f(F \mid p) \cdot f(p \mid S, S)=p^{2}(1-p)
\end{aligned}
$$

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence $\{S, S, F, S, \ldots\}$ [f_{0} is uniform]:

$$
\begin{aligned}
f(p \mid S) & \propto f(S \mid p)=p \\
f(p \mid S, S) & \propto f(S \mid p) \cdot f(p \mid S)=p^{2} \\
f(p \mid S, S, F) & \propto f(F \mid p) \cdot f(p \mid S, S)=p^{2}(1-p) \\
\cdots & \cdots \\
f(p \mid \# S, \# F) & \propto p^{\# S}(1-p)^{\# F}=p^{\# S}(1-p)^{(1-\# s)}
\end{aligned}
$$

Bayes' billiard and Bernoulli trials

It is easy to recongnize the analogy:

- Left/Right \rightarrow Success/Failure
- if Left \leftrightarrow Success:
- $l / L \leftrightarrow p$ of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence $\{S, S, F, S, \ldots\}\left[f_{0}\right.$ is uniform]:

$$
\begin{aligned}
f(p \mid S) & \propto f(S \mid p)=p \\
f(p \mid S, S) & \propto f(S \mid p) \cdot f(p \mid S)=p^{2} \\
f(p \mid S, S, F) & \propto f(F \mid p) \cdot f(p \mid S, S)=p^{2}(1-p) \\
\ldots & \cdots \\
f(p \mid \# S, \# F) & \propto p^{\# S}(1-p)^{\# F}=p^{\# S}(1-p)^{(1-\# s)} \\
f(p \mid x, n) & \propto p^{x}(1-p)^{(n-x)} \quad[x=\# S]
\end{aligned}
$$

Inferring the Binomial p

$$
f(p \mid x, n, \mathcal{B})=\frac{(n+1)!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

Inferring the Binomial p

$f(p \mid x, n, \mathcal{B})=\frac{(n+1)!}{x!(n-x)!} p^{x}(1-p)^{n-x}$,

$$
\mathrm{E}(p)=\frac{x+1}{n+2} \quad \text { Laplace's rule of successions }
$$

$\operatorname{Var}(p)=\frac{(x+1)(n-x+1)}{(n+3)(n+2)^{2}}$
$=\mathrm{E}(p)(1-\mathrm{E}(p)) \frac{1}{n+3}$.

Interpretation of $\mathbf{E}(p)$

Think at any future event $E_{i>n}$ \Rightarrow if we were sure of p, then our confidence on $E_{i>n}$ will be exactly p, i.e.

$$
P\left(E_{i} \mid p\right)=p .
$$

Interpretation of $\mathbf{E}(p)$

Think at any future event $E_{i>n}$ \Rightarrow if we were sure of p, then our confidence on $E_{i>n}$ will be exactly p, i.e.

$$
P\left(E_{i} \mid p\right)=p .
$$

But we are uncertain about p. How much should we believe $E_{i>n}$?.

Interpretation of $\mathbf{E}(p)$

Think at any future event $E_{i>n}$
\Rightarrow if we were sure of p, then our confidence on $E_{i>n}$ will be exactly p, i.e.

$$
P\left(E_{i} \mid p\right)=p .
$$

But we are uncertain about p. How much should we believe $E_{i>n}$?.

$$
\begin{aligned}
P\left(E_{i>n} \mid x, n, \mathcal{B}\right) & =\int_{0}^{1} P\left(E_{i} \mid p\right) f(p \mid x, n, \mathcal{B}) \mathrm{d} p \\
& =\int_{0}^{1} p f(p \mid x, n, \mathcal{B}) \mathrm{d} p \\
& =\mathrm{E}(p) \\
& =\frac{x+1}{n+2} \quad \text { (for uniform prior). }
\end{aligned}
$$

From frequencies to probabilities

$$
\begin{aligned}
\mathrm{E}(p) & =\frac{x+1}{n+2} \quad \text { Laplace's rule of successions } \\
\operatorname{Var}(p) & =\mathrm{E}(p)(1-\mathrm{E}(p)) \frac{1}{n+3} .
\end{aligned}
$$

For 'large' n, x and $n-x$: asymptotic behaviors of $f(p)$:

$$
\begin{aligned}
\mathrm{E}(p) & \approx p_{m}=\frac{x}{n} \quad\left[\text { with } p_{m} \text { mode of } f(p)\right] \\
\sigma_{p} & \approx \sqrt{\frac{p_{m}\left(1-p_{m}\right)}{n}} \underset{n \rightarrow \infty}{ } 0 \\
p & \sim \mathcal{N}\left(p_{m}, \sigma_{p}\right) .
\end{aligned}
$$

Under these conditions the frequentistic "definition" (evaluation rule!) of probability (x / n) is recovered.

Special case with $x=0$

$$
\begin{aligned}
f(p \mid 0, n, \mathcal{B}) & =(n+1)(1-p)^{n} \\
F(p \mid 0, n, \mathcal{B}) & =1-(1-p)^{n+1} \\
p_{m} & =0 \\
\mathrm{E}(p) & =\frac{1}{n+2} \longrightarrow \frac{1}{n} \\
\sigma(p) & =\sqrt{\frac{(n+1)}{(n+3)(n+2)^{2}}} \longrightarrow \frac{1}{n}
\end{aligned}
$$

Special case with $x=0$

$$
\begin{aligned}
f(p \mid 0, n, \mathcal{B}) & =(n+1)(1-p)^{n} \\
F(p \mid 0, n, \mathcal{B}) & =1-(1-p)^{n+1} \\
p_{m} & =0 \\
\mathrm{E}(p) & =\frac{1}{n+2} \longrightarrow \frac{1}{n} \\
\sigma(p) & =\sqrt{\frac{(n+1)}{(n+3)(n+2)^{2}}} \longrightarrow \frac{1}{n} \\
P\left(p \leq p_{u} \mid 0, n, \mathcal{B}\right) & =95 \% \\
& \Rightarrow p_{u}=1-\sqrt[n+1]{0.05}
\end{aligned}
$$

Probabilistic upper bound

Special case with $x=0$

Special case with $x=0$

Special case with $x=0$

Special case with $x=0$

For the case $x=n$

(like 'observing' a 100\% efficiency):
\rightarrow just reason on the complementary
parameter

$$
q=1-p
$$

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game

- playing with other models of $f($ data $\mid p, I)$

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game

- playing with other models of $f($ data $\mid p, I)$
- make a simultaneous inference on several parameters

$$
\rightarrow f\left(p_{1}, p_{2}, \ldots \mid \text { data }, I\right)
$$

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game

- playing with other models of $f($ data $\mid p, I)$
- make a simultaneous inference on several parameters

$$
\rightarrow f\left(p_{1}, p_{2}, \ldots \mid \text { data }, I\right)
$$

- take into account for systematics
\rightarrow "integrating over subsamples of I "

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game

- playing with other models of $f($ data $\mid p, I)$
- make a simultaneous inference on several parameters

$$
\rightarrow f\left(p_{1}, p_{2}, \ldots \mid \text { data }, I\right)
$$

- take into account for systematics
\rightarrow "integrating over subsamples of $I "$
- etc.

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game
... although at a certain point you need to face computational issues

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game
... although at a certain point you need to face
computational issues
\rightarrow that was of the main reason why Laplace's methods were set apart and frequentistics methods fourished

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game
... although at a certain point you need to face
computational issues
\rightarrow that was of the main reason why Laplace's methods were set apart and frequentistics methods fourished

But we can now benefit of powerful computers and impressive improvements in computation methods

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game
... although at a certain point you need to face computational issues
\rightarrow that was of the main reason why Laplace's methods were set apart and frequentistics methods fourished

But we can now benefit of powerful computers and impressive improvements in computation methods

We have no longer excuses!!

Continuing the game

We have seen ho to tackle with a single idea problems that are treated difefrently in 'standard statistics':

- comparing hypotheses
- parametric inference

You can continue the game
\Rightarrow some 'appetizers' will be provided tomorrow by Lorenzo

OK, ... but the priors?

Priors are an important ingredient of the framework:

OK, ... but the priors?

Priors are an important ingredient of the framework:

- They are crucial in the Bayes theorem:
- there is no other way to perform a probabilistic inference without passing through priors
... although they can be often so vague to be ignored.

OK, ... but the priors?

Priors are an important ingredient of the framework:

- They are crucial in the Bayes theorem:
- there is no other way to perform a probabilistic inference without passing through priors
... although they can be often so vague to be ignored.
- They allow us to use consistently all pieces of prior information. And we all have much prior information in our job!
Only the perfect idiot hase no priors

OK, . . . but the priors?

Priors are an important ingredient of the framework:

- They are crucial in the Bayes theorem:
- there is no other way to perform a probabilistic inference without passing through priors
... although they can be often so vague to be ignored.
- They allow us to use consistently all pieces of prior information. And we all have much prior information in our job!
Only the perfect idiot hase no priors
- Mistrust all prior-free methods that pretend to provide numbers that should mean how you have to be confident in something.

OK, . . . but the priors?

Priors are an important ingredient of the framework:

- They are crucial in the Bayes theorem:
- there is no other way to perform a probabilistic inference without passing through priors
... although they can be often so vague to be ignored.
- They allow us to use consistently all pieces of prior information. And we all have much prior information in our job!
Only the perfect idiot hase no priors
- Mistrust all prior-free methods that pretend to provide numbers that should mean how you have to be confident in something.
(Diffidate chi vi promette di far germogliar zecchini nel Campo dei Miracoli! - Pinocchio docet)

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)
- It is very close to the natural way of reasoning of physicists (as of everybody else).

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)
- It is very close to the natural way of reasoning of physicists (as of everybody else).
- Its consistent application in small-complex problems was prohibitive many years ago.

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)
- It is very close to the natural way of reasoning of physicists (as of everybody else).
- Its consistent application in small-complex problems was prohibitive many years ago.
- But it is now possible thank to progresses in applied mathematics and computation.

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)
- It is very close to the natural way of reasoning of physicists (as of everybody else).
- Its consistent application in small-complex problems was prohibitive many years ago.
- But it is now possible thank to progresses in applied mathematics and computation.
- It makes little sense to stick to old 'ah hoc' methods that had their raison d'être in the computational barrier.

Conclusions

- The probabilistic framework basically set up by Laplace in his monumental work is healthy and grows up well (browse e.g. Amazon.com)
- It is very close to the natural way of reasoning of physicists (as of everybody else).
- Its consistent application in small-complex problems was prohibitive many years ago.
- But it is now possible thank to progresses in applied mathematics and computation.
- It makes little sense to stick to old 'ah hoc' methods that had their raison d'être in the computational barrier.
- Mistrust all results that sound as 'confidence', 'probability' etc about physics quantities, if they are obtained by methods that do not contemplate 'beliefs'.

[^0]: ?

