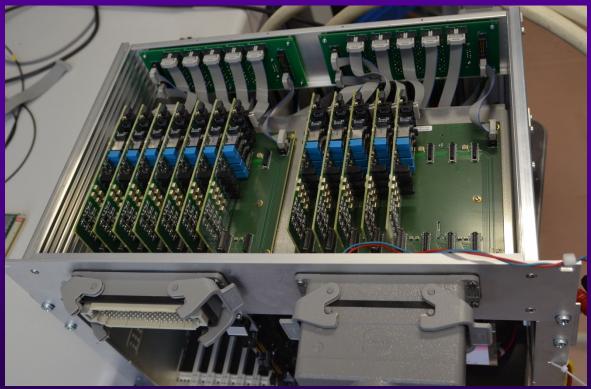


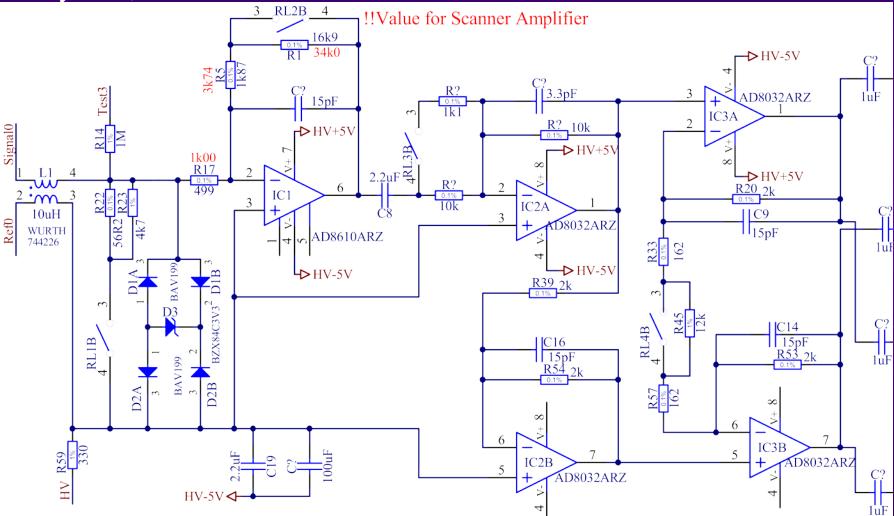
WireGrid electronics in the Linac 4 tunnel

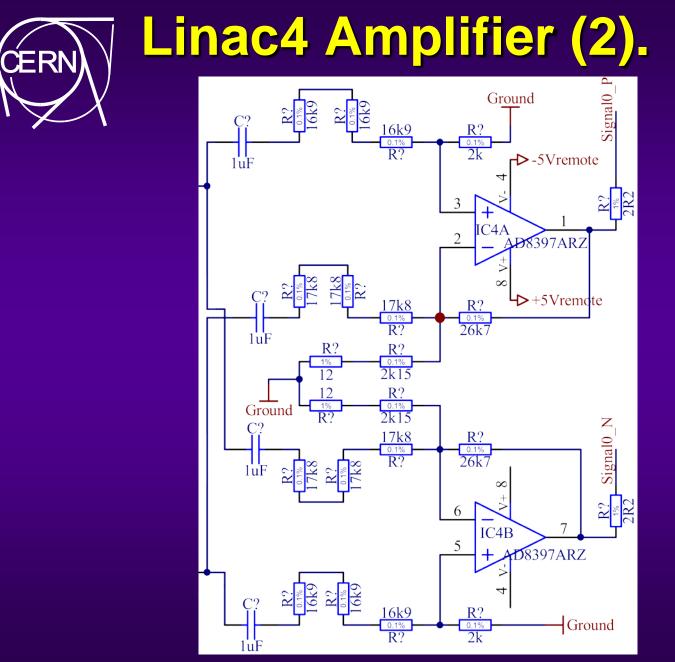
Technology Choice.

- At the time of designing the radiation levels were unknown.
- Relatively little time for development.
- No choice was given about where to place the equipment.
- To reach the specifications the electronics should be near the detectors (Initially 1m80, new design would allow ~8m).
- Therefore we have opted for a system with only the absolutely necessary electronics near the beamline:
 - Only amplifiers,
 - No logic,
 - Remote power supplies.



- Between Grid and Amplifier: two cables with twisted pairs with individual screening. The two cables will be mounted together in large Harting 72-pin connectors.
- Between Amplifiers and Controls a single cable is proposed (CERN ND100) mounted with Harting 108-pin connectors.
- Power and I/O control are handled by the same ND100 cables, no additional cabling is foreseen.
- Bias <u>+120V</u> directly onto measuring wires.


Amplifier-boxes


- Up to 32 channels per box.
- Motherboard with daughter-boards carrying 4 amplifiers each.
 - Amplifiers with BW = ~1MHz,
 - Input amplifiers can be biased up to <u>+120V</u>.

Linac4 Amplifier (1)

12/02/2013

Design Details (1).

- Amplifier's Maximum Electrical Input: 10mA,
- Amplifier's highest sensitivity: 1µA full scale,
 - The calculated input-related noise-level is ~2nA at 1MHz BW.
 - With software amplification highest sensitivity will be (=<)200nA full scale.
- Overall BW is defined by the cable-length between grid and electronics,
 - The newer design allows longer cables (8m).
- Isolated input-stage: Bias of up to <u>+</u>120V on measuring wires.
- The design foresees to use test-resistances:
 - At the grid in the vacuum-chamber,
 - Outside the vacuum-chamber at the cable-connection,
 - At the amplifier-inputs.
- The design is made to accept different types of amplifiers so it can be used for other machines as well.

Design Details (2).

- No electronic switches: miniature reed-relays.
- The amplifiers cannot consume too much power,
 - Cable-length, noise-level and lifetime.
- Input-protection by small-signal diodes BAV199 and one small zenerdiode BZX84C3,3.
- Amplifiers AD8610ARZ, AD8032ARZ and AD8397ARZ,
 - All from Analog Devices XFCB process,
 - Not that much choice anyway...
 - Report from the European Space Agency and NASA:
 - "Commercial Components Identification In Naturally Radiation Hardened Technologies" 2002ESASP.507...17M
 - They have tested chips from this family which were still o.k. after 100kRad(Si) radiation.
 - These chips appear not to suffer from single event upset.

Place in the tunnel.

Emplacement	Type de montage	Type de capteur	Position
LEBT	Montage sur la poutre	SEM grid 2 x 24 wires	L4L.BSGH.1151 L4L.BSGV.1151
Chopper line	Montage sur la poutre	2 Wire scanners	L4L.BWS.3312 L4L.BWS.3712
DTL	Rien	Rien	
CCDTL	Au sol	SEM grid 2 x 24 wires	L4C.BSGH.0121 L4C.BSGV.0121
CCDTL	Au sol	Wire scanner	L4C.BWS.02112
CCDTL	Au sol	SEM grid 2 x 24 wires	L4C.BSGH.0421 L4C.BSGV.0421
CCDTL	Au sol	Wire scanner	L4C.BWS.0622
PIMS	Au sol	SEM grid 2 x 24 wires	L4P.BSGH.0121 L4P.BSGV.0121
PIMS	Au mur, on a 75cm	Wire scanner	L4P.BWS.0402
PIMS	Au mur , on a 75cm	SEM grid 2 x 24 wires	L4P.BSGH.0601 L4P.BSGV.0601
PIMS	Au mur , on a 75cm	Wire scanner	L4P.BWS.1002
	Au sol	SEM grid 2 x 24 wires	L4T.BSGH.0223 L4T.BSGV.0223
Juste avant ligne dump	Rien	BSM	
	Rack	SEM grid 2 x 24 wires	L4T.BSGH.0243 L4T.BSGV.0243
Ligne dump	Rack	SEM grid 2 x 24 wires	L4Z.BSGH.0273 L4Z.BSGV.0273
Ligne dump	Rack	SEM grid 2 x 24 wires	L4Z.BSGH.0287 L4Z.BSGV.0287
Virage	Rack	SEM grid 2 x 24 wires	L4T.BSGH.0523 L4T.BSGV.0523
L4T	Au sol	SEM grid 2 x 24 wires	L4T.BSGH.1247 L4T.BSGV.1247

Gerrit Jan Focker, BE/BI/PM

12/02/2013

Our goal of this meeting.

- At the place of our rack we had expected more radiation due to the bend in the beam and especially due to the beam dump.
- Our questions:
 - Is it useful to have screening around our electronics?
 - If yes, what could this screening consist of?
 - Do the experts have any idea about the lifetime of our electronics?