

Radiation test results PSI facility

Transceivers:

SN74ACT245D (8 Bit)

SN74LVC16T245DGGR (16 Bit)

Preparation, development, test and analysis by

Pascal Oser, Eleftherios Fadakis, Gilles Foucard, Julien Mekki, Paul Peronnard, Raffaello Secondo, Giovanni Spiezia

Group: EN-STI-ECE

12/02/2013

Content

- Presentation of the devices
- Obejctives + Beam conditions
- Schematics
- Test settings
- Test procedure
- Results

Presentation of the devices

SN74ACT245D (8 Bit)

- Asynchronous two-way communication
- 4.5 to 5.5 V operation voltage
- Inputs accept voltages up to 5.5 V
- TTL compatible
- Communication direction selectable
- Outputs can be switched OFF (Hiz)
- ightarrow 3 devices under test

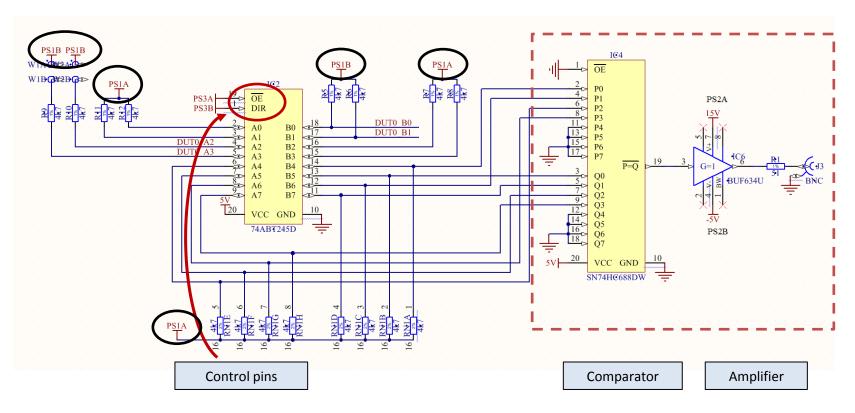
SN74LVC16T245DGGR (16 Bit)

- Asynchronous two-way communication
- 0.5 to 6.5 V operation voltage
- Inputs accept voltages up to 6.5 V
- Ports of 16 Bit split into 2x 8 Bit ports
- Dual supply transceiver
 - Ports A & B can track each an independent voltage V_{ccA} and V_{ccB}
- Translation of signals to different voltage levels
 - 1.8 V, 2.5 V, 3.3 V, 5 V
- Communication direction selectable
- Outputs can be switch OFF (Hiz)
- \rightarrow 6 devices under test

Objective of the irradiation test

- Evaluate the voltage level & the signal recognition
- Test the functionality of both control pins
 - DIR = Direction
 - OE = Output enable
- Estimate sensitivity to SET and SEL
- Verify the device supply current

Beam condition


PIF facility at PSI

- Proton energy was set to 230 MeV
- Dose rate: 5 10 rad/s
- TID per device: ~ 400 Gy

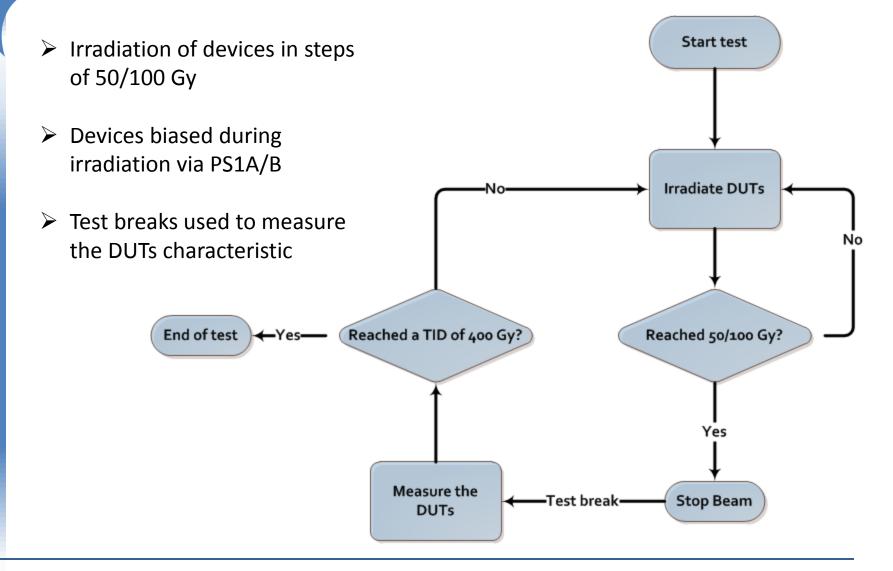
Schematics – 8 Bit Transceiver

Outside beam



- Voltages levels on pins adjustable with PS1A/B
- V_{cc} = 5 V

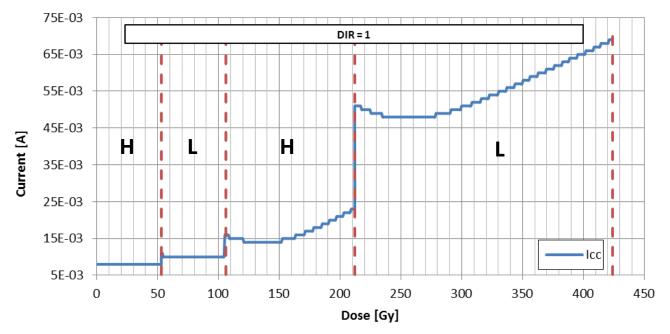
Schematics – 16 Bit Transceiver


Outside beam

- Voltages levels on pins adjustable with PS1A/B
- V_{ccA} = 5 V, V_{ccB} = 3.3 V

Test procedure

Test settings – Transceivers


Beam ON					
Function test	ŌĒ	DIR	PS1A	PS1B	
-	0	0/1	0 / 5 V	0 / 4 V	
Beam OFF / Test break					

Function test	ŌĒ	DIR	PS1A	PS1B
Direction A→B	0	1	5 V	4 V
Direction A←B	0	0	5 V	4 V
Level detection	0	0/1	50 V 05 V	4 V
Enable pin (isolation)	1	0	5 V	4 V

Results – SN74ACT245D (8 Bit)

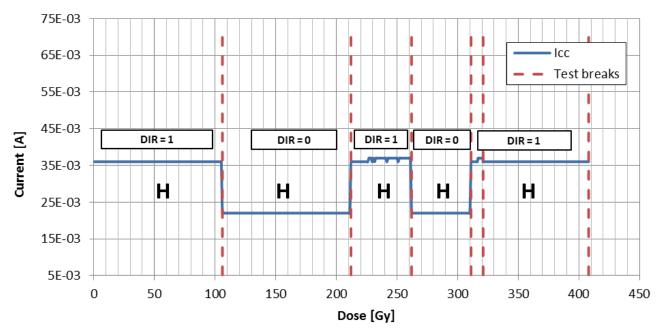
Total supply current during the irradiation:

Total supply current vs. TID (Board 1)

- Current is increasing with dose → from 8 to 69 mA after 431 Gy
- Current doubles when switching to High level → from 69 to 140 mA at 431 Gy (not shown)
- ✓ Devices within the specification (max. tolerable I_{cc} = 200 mA)

Results – SN74ACT245D (8 Bit)

Measurements during test breaks:


Run	TID per run (Gy)	lated Ti	D (Gy)	Flu	ence pe (p/cm²			DIR			ŌĒ			Test ok?
21	Function test		DUT 1 [V]			DUT 2 [V]			DUT 3 [V]				Yes Yes Yes	
22		B0	B1	A2	A3	BO	B1	A2	A3	B0	B1	A2	A3	Yes
	Transport A → B	4.9	4.9	3.2	3.5	4.9	4.9	3.5	3.5	4.8	4.8	3.4	3.4	Yes
23	Transport A←B	3.5	3.5	4.9	4.9	0.5	0.5	0	0	0.3	0.3	0	0	Yes Yes
	Device OFF (pin isolation)	5.0	5.0	4.5	5.0	0.9	0.8	5.0	5.0	0.3	0.3	4.9	4.9	Yes Yes
Note: PS1B was set from 4 V to 3.5 V. Green = Ok, Orange = Within the tolerance range, Red = Out of specifications														

- All devices stable until a TID of 212 Gy
- After 424 Gy:
 - 1) All devices failed when turning OFF the device (Pin isolation)
 - 2) Input voltage threshold exceeded limits: V_{IL} (1.3 V), V_{IH} (1.7 V); (max. specified limit: 0.8/2 V)

Results – SN74LVC16T245DGGR (16 Bit)

Total supply current during the irradiation:

Total supply current vs. TID (Board 2)

- Current mainly changes when switching the transport direction → from 35 to 22 mA and vice versa
- ✓ Devices within the specification (max. tolerable I_{cc} = 200 mA)

Results – SN74LVC16T245DGGR (16 Bit)

Measurements during test breaks:

Run	TID (Gy)	Cumulated TID (Gy)	Fluence (p/cm²)	DIR	ŌĒ	Test ok?
		106	2 2 2 5 4 4	А→В	ON	Yes
26	100			А←В	ON	Yes
26	106		2.00E+11	А←В	OFF	Yes
				А→В	OFF	Yes
27	-	-	-	-	-	No run
		212	2.00E+11	А→В	ON	Yes
28	106			А←В	ON	Yes
28	100			А←В	OFF	Yes
			А→В	OFF	Yes	
29	-	-	-	-	-	No run
		262	9.48E+10	А→В	ON	Yes
20	50			А←В	ON	Yes
30				А←В	OFF	Yes
				А→В	OFF	Yes

Run	TID (Gy)	Cumulated TID (Gy)	Fluence (p/cm²)	DIR	ŌĒ	Test ok?
		A		А→В	ON	Yes
24	31 49 311 9.20E+	0.205.10	А←В	ON	Yes	
31		9.20E+10	А←В	OFF	Yes	
			А→В	OFF	Yes	
32	10	321	2.00E+10	No test due to beam crash		
				А→В	ON	Yes
22	33 87 408 1.65E+11	100	1.65E+11	А←В	ON	Yes
33		408		А←В	OFF	Yes
			А→В	OFF	Yes	

 $\checkmark\,$ All devices stable until a TID of 408 Gy $\,$

✓ All tested parameters within the specifications

CERN

Summary – Transceivers

- 3x 8 Bit transceivers and 6x 16 Bit transceivers were tested
- All chips were irradiated by a 230 MeV proton beam
- All received a cumulated dose of 400 430 Gy at 5 10 rad/s
- No SETs or SELs observed

Functions	SN74ACT245 (8 Bit)	SN74LVC16T245DGGR (16 Bit)
Device supply current	High increase (+132 mA) Remains below specified limit (200 mA)	No increase Remains below specified limit (200 mA)
Direction (DIR) pin	Fails between 212 – 424 Gy	No errors
Output enable (OE) pin	Fails between 212 – 424 Gy	No errors
Input voltage thresholds V _{IL} & V _{OL}	Fail between 212 – 424 Gy	Stable
Input / Output levels	Went out of specification between 212 – 424 Gy	Stable
Level recognition	No errors	No errors
02/2013	Summary – Transceivers	13

Conclusion

> SN74ACT245 (8 Bit):

- Device stable until 212 Gy
- Begins to fail at higher doses

SN74LVC16T245DGGR (16 Bit):

- Device stable until 408 Gy
- No errors have been observed

Thank you for your attention!

Any questions?